انواع برج های جداسازی

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

انواع برج های جداسازی:

یکی از مهم ترین تجهیزات فرآیندی که در صنایع مربوط به نفت و گاز وجود دارد، برج های جداسازی می باشند. کار این تجهیزات، جداسازی اجزای موجود در یک ترکیب می باشد که هر کدام از این اجزاء می توانند ارزش بسیار بالایی در مقایسه با ترکیب اولیه داشته باشند. در این قسمت به معرفی انواع برج های جداسازی می پردازیم. جداسازی برای مخلوط های همگن و غیر همگن صورت می گیرد.

 اگر مخلوطی که جداسازی می شود همگن باشد، جداسازی می تواند تنها با افزودن و یا ایجاد فاز دیگری درسیستم انجام شود. به عنوان مثال در جداسازی یک مخلوط گازی، فاز دیگر می تواند به وسیله چگالش جزئی انجام شود. در صورتیکه یک مخلوط ناهمگن داشته باشیم، جداسازی می تواند به طور فیزیکی و با استفاده از تفاوت دانسیته بین فازها انجام گیرد.

اساس کار برج ها افزایش سطح تماس بین فازها می باشد که این افزایش ممکن است توسط سینی یا پرکن تامین شود. برج های جداسازی به سه روش پیوسته، نیمه پیوسته و غیرپیوسته عمل می کنند. جداسازی فازی درون برج ها به صورت فازهای جزئی زیر انجام می گیرند:

بخار-مایع، مایع-مایع، جامد-مایع، جامد-گاز و جامد-جامد.

دستگاه های بکار رفته در عملیات گاز- مایع به دو دسته زیر تقسیم می شوند:

    ۱- دستگاه هایی که در آن ها گاز پراکنده می شود:

مخازنی که در آن ها حباب گاز ایجاد می شود، مخزن مجهز به همزن و انواع برج های سینی دار را می توان در این دسته قرار داد. در این دستگاه ها فاز گاز به صورت حباب یا کف در فاز مایع پراکنده می شوند.

    ۲- دستگاه هایی که در آن ها فاز مایع پراکنده می شود:

این گروه شامل دستگاه هایی می شود که در آن ها مایع به صورت یک فیلم نازک و یا به صورت قطره ای درآمده و در فاز گاز پراکنده می شود. در این میان برج های دیواره مرطوب، برج های پاششی و ستون های پر شده را می توان نام برد.

معمولاً برج های جداسازی، بر اساس عملیات انتقال جرمی که بین فازها انجام می شود، به صورت زیر تقسیم بندی می شوند.

الف – برج های تقطیر

ب – برج های استخراج

ج – برج های جذب و دفع

برج های تقطیر(Distillation Columns):

تقطیر از جمله مهم ترین فرآیندهای جداسازی است که اساس جداسازی در آن اختلاف نقطه جوش اجزاء مخلوط می باشد.فرآیند تقطیر از روش های مستقیم جداسازی به شمار می رود. عمل تقطیر با استفاده از حرارت دادن به یک مخلوط و سرد کردن بخارات حاصل انجام می شود. به طور کلی یک برج تقطیر شامل چهار بخش زیر می باشد:

  1. بدنه اصلی برج (Tower)
  2. سیستم جوشاننده یا ریبویلر (Reboiler)
  3. سیستم میعان کننده یا کندانسور (Condenser)
  4. تجهیزات جانبی از جمله سیستم های کنترلی، مبدل های حرارتی میانی، پمپ ها، مخازن و…

معرفی انواع برج های جداسازی

به طور کلی برج هایی که در صنعت برای تقطیر به کار می روند، به صورت ۲ نوع زیر می باشند:

  1. برج های سینی دار (Tray Towers)
  2. برج های پر شده (Packed Towers)

برج های تقطیر سینی دار (Tray Distillation Towers):

برج های سینی دار مهم ترین نوع برج هایی هستند که در مراکز مهم صنعتی مانند پالایشگاه ها از آنها استفاده می شود.داخل این برج ها به فواصل معینی صفحه های فلزی سوراخ داری قرار داده شده است که به آن ها سینی گفته می شود. این برج ها به ارتفاع های مختلفی ساخته می شود که ممکن است از چند متر تا بیش از ۵۰ متر متغیر باشد. قطر این برج ها نیز ممکن است تا بیش از ۵ متر هم در نظر گرفته شود. برج های تقطیر می توانند سیستم ریبویلر و کندانسور داشته باشند و یا نداشته باشند.

درون برج، جریان های مایع و گاز بصورت غیر همسو روی این سینی ها با یکدیگر در تماس قرار می گیرند و انتقال جرم روی سینی رخ می دهد. جریان مایع به شکل افقی روی سینی حرکت کرده و توسط ناودانی هایی به سمت پایین (سینی بعد) می ریزد. جریان گاز نیز از پایین و توسط منافذ روی سینی، به سمت بالا حرکت می کند و به شکل حباب در مایع پخش می شود.سپس حباب ها از مایع جدا شده و به سمت بالا حرکت می کنند. ریبویلر حرارت لازم برای بخار شدن مایع در پایین برج را فراهم می کند و کنداسور بخار خروجی از بالای برج را مایع می کند.

مهم ترین پارامتر در طراحی یک برج تقطیر، تعداد مراحل تئوری آن می باشد. بر اساس آن تعداد سینی و همچنین ارتفاع برج مشخص می گردد. از دیگر پارامترهای مهم یک برج سینی دار می توان به فاصله سینی ها، عمق مایع روی سینی ها، نوع منافذ روی سینی، پروفایل فشار و دمای برج، سینی خوراک و… اشاره کرد. برج های سینی دار را بر اساس نوع منافذ روی سینی می توان به ۳ نوع زیر تقسیم کرد:

    ۱- سینی های غربالی (Sieve Tray):

سینی های غربالی، صفحات مشبک می باشند که بخارات از منافذ آن عبور کرده و به صورت حباب هایی وارد مایع روی سینی می شوند. این سینی ها نسبت به دو نوع دیگر بسیار ارزان بوده و ظرفیت بالاتری دارند. مزیت دیگر این سینی ها افت فشار کم آنها است که مجموعاً باعث شده که در طراحی ها در صورتی که مشکل عمده ای در میان نباشد به عنوان اولین انتخاب در نظر گرفته شود.

معرفی انواع برج های جداسازی

تصویر سمت راست سینی یک پاس گذر و تصویر سمت چپ سینی دو پاس گذر می باشد

   ۲- سینی دریچه ای (Valve Tray):

این سینی ها نیز صفحات سوراخ دار می باشند که هر سوراخ مجهز به یک صفحه کوچک (دیسک) متحرک می باشد. سوراخ های سینی می تواند مدور یا مستطیل باشد. در دبی کم بخار، صفحه بر روی سوراخ مستقر شده و آن را به نحوی می پوشاند که مایع چکه نکند. دریچه منافذ در ۲ نوع ثابت و متحرک ساخته می شوند. با افزایش دبی بخار دریچه در امتداد قائم به طرف بالا حرکت کرده و مجرا را برای عبور بخار باز می کند. این سینی ها قیمت مناسبی دارند و نسبت به تغییرات دبی بخار انعطاف پذیر می باشند.

معرفی انواع برج های جداسازی

تصویر سمت راست دارای دریچه های متحرک و تصویر سمت چپ دارای دریچه های ثابت می باشد

معرفی انواع برج های جداسازی

تصویر فوق نحوه عملکرد سینی دریچه ای را نشان می دهد

    ۳- سینی های فنجانی (Bubble Cap Tray):

این سینی متشکل از یک صفحه مشبک است که روی هر سوراخ یک لوله هدایت گاز به بالا و یک فنجان وارونه روی آن وجود دارد. در سینی فنجانی معمولاً لایه ای از مایع بر روی سینی باقی می ماند و گاز خروجی از زیر فنجان باید از داخل این لایه عبور کند. شکاف های روی هر فنجان، مستطیلی با عرض ۰٫۳ تا ۰٫۹۵cm و طول ۱٫۳ تا ۳٫۸cm می باشد. از مزایای این سینی ها این است که اولاً نشتی مایع از طریق سوراخ های سینی وجود ندارد ، همچنین در دبی های بسیار کم گاز به خوبی عمل می کند.

معرفی انواع برج های جداسازی

تصاویر بالا شکل سینی های فنجانی را نشان می دهد

معرفی انواع برج های جداسازی

تصویر فوق نحوه عملکرد سینی فنجانی را نشان می دهد

برج های تقطیر پر شده (Packed Bed Distillation Tower):

طرز کار برج های پر شده به همان صورت برج های سینی دار می باشد، با این تفاوت که در برج های پر شده سینی وجود ندارد بلکه تمام برج از اجسامی با جنس و شکل معین پر شده است که به این اجسام پرکن (Packing) می گویند. پرکن ها عموماً بر دو نوع منظم و نامنظم تقسیم بندی می شوند؛ پرکن های منظم در برخی موارد حتی بر سینی ها نیز برتری دارند. 

در این برج ها نیز همانند برج های سینی دار مایع از بالا و گاز از پایین جریان پیدا می کند. توزیع مایع در برج های پرکن حائز اهمیت بسیاری است زیرا توزیع ناهمسان موجب خشک ماندن برخی قسمت های بستر و در نتیجه کاهش راندمان تماس گاز -مایع می شود. جهت نگه داشتن بستر پرکن یک سینی زیرین و برای جلوگیری از انبساط بستر یک سینی بالایی در برج های پرکن تعبیه می شود.معرفی انواع برج های جداسازیچند نمونه از پرکن های منظممعرفی انواع برج های جداسازیچند نمونه از پرکن های نامنظم پرکن های منظم دارای برتری های زیر نسبت به برج های سینی دار می باشد:

    1. افت فشار بسیار کمتر

پرکن ها باید خصوصیات زیر را داشته باشند:

    1. سطح تماس زیادی بین مایع و گاز ایجاد کند

برج های استخراج (Extracting Towers):

در استخراج مایع- مایع دو فاز را باید در تماس با یکدیگر قرار داد تا عمل انتقال جزء مورد نظر انجام شده و سپس جداسازی صورت گیرد. در استخراج، چون چگالی دو فاز نزدیک به یکدیگر می باشد، برای اختلاط و جداسازی نیروی محرکه کمی در دسترس است. در این حالت عمل مخلوط کردن دو فاز مشکل و جداسازی آن ها مشکل تر است. ویسکوزیته هر دو فاز نسبتاً بالا و سرعت حرکت مواد در بیشتر قسمت های دستگاه های استخراج پایین است. 

در نتیجه در بسیاری از دستگاه های استخراج، نیروی محرکه لازم برای اختلاط و جداسازی با روش های مکانیکی تامین می شود. محصول استخراج ممکن است سبک تر یا سنگین تر از محصول پسماند باشد در نتیجه محصول استخراج در بعضی از دستگاه ها از قسمت فوقانی و در بعضی دیگر از قسمت تحتانی دستگاه خارج می شود. مهم ترین دستگاه ها و برج هایی که در استخراج بکار برده می شوند عبارتند از :

۱- دستگاه های مخلوط کننده- ته نشین کننده (Mixer-Settlers):

این دستگاه جزء متداول ترین دستگاه های استخراج محسوب می شود و عملکرد بسیار ساده ای دارد. راندمان مرحله ای آن ۷۵ تا ۹۵% می باشد. این دستگاه از یک بخش برای اختلاط دو فاز و بخش دیگری برای جداسازی آن دو تشکیل شده است. میکسر باید اختلاط یکنواختی را ایجاد کند. این اختلاط می تواند با تکان دادن کل مخزن، رها کردن حباب درون محتویات مخزن و یا جریان دادن محتویات از پایین به بالای مخزن صورت گیرد. ستلر به شکل مخزنی می باشد که به دو فاز مخلوط شده، اجازه ته نشینی می دهد.معرفی انواع برج های جداسازینحوه عملکرد دستگاه Mixer-Settler

۲- ستون های ضربه ای (Pulsed Columns):

در این دستگاه پالسی به صورت هیدرولیکی به مایع داخل ستون اعمال می شود. چون این استخراج کننده ها هیچ قسمت متحرکی ندارند خیلی عملی هستند. صفحات سوراخ دار، طوری سوراخ شده اند که جریان عادی در آن ها رخ نمی دهد. عمل نوسان که روی مایعات انجام می شود، مایعات سبک و سنگین را از سوراخ ها عبور می دهد. ستون های پر شده نیز می توانند به صورت ضربه ای عمل کنند. در این دستگاه شدت انتقال جرم در برابر افزایش هزینه انرژی، افزایش می یابد.

معرفی انواع برج های جداسازی

اجزای ستون ضربه ای

۳-برج های استخراج پاششی و پرکن (Spray and Packed Extracting Towers):

در برج پاششی مایع سبکتر از پایین وارد و با عبور از قسمتی شبیه به آب پاش به صورت قطرات کوچک پخش می شود. قطرات مایع سبک از داخل توده مایع سنگین که به طور پیوسته به طرف پایین حرکت می کند عبور کرده و به طرف بالا می روند. این قطرات در حین بالا رفتن انتقال جرم را انجام داده و بالای برج به هم ملحق می شوند. در روش گفته شده فاز سبک پراکنده و فاز سنگین پیوسته است.

 عکس این حالت نیز ممکن است، بدین صورت که فاز سنگین در قسمت فوقانی ستون در فاز سبک پاشیده می شود و به صورت پراکنده از داخل جریان پیوسته مایع سبک، به طرف پایین حرکت کند. به منظور ایجاد سطح تماس بیشتر فاز دارای شدت جریان بیشتر را پراکنده میکنند. اگر اختلاف ویسکوزیته بالا باشد، فاز دارای ویسکوزیته بالاتر را برای افزایش سرعت ته نشینی پراکنده می کنند.

برج های پاششی به علت اختلاط محوری، راندمان کمی دارند. و به سختی می توان از آن یک واحد تئوری به دست آورد.

معرفی انواع برج های جداسازی

انواع برج های استخراج پاششی- تصویر سمت راست سینی دار و تصویر وسط پر شده می باشد

۴- برج های دارای سینی مشبک(Sieve Extracting Tower):

طرز کار این نوع از برج ها به صورت برج های پاششی است. با این تفاوت که در داخل این برج ها به فاصله های معین سینی های سوراخداری قرار داده شده است. در این سینی قطر سوراخ ها ۱٫۵ تا ۴٫۵mm و فاصله آن ها از یکدیگر ۱٫۵ تا ۶mm است. در این سینی ها معمولاً مایع سبک فاز پراکنده را تشکیل می دهد، به طوری که در زیر هر سینی لایه ای از مایع تشکیل می گردد که به درون مایع سنگین پاشیده می شود.

۵-برج های استخراج صفحه ای (Plate Towers):

این گونه از برج های استخراج صفحه هایی افقی دارند که مایع سنگین از بالای هر صفحه جریان یافته و از لبه به داخل فاز سنگین و به طرف بالا پاشیده می شود. در این نوع از برج ها فاصله بین صفحه ها در حدود ۱۰۰ تا ۱۵۰ میلی متر است. در تصویر زیر عملکرد برج استخراج صفحه ای را مشاهده کنید.

برج استخراج صفحه ای (Plate Towers)۶- برج های استخراج همزن دار (Baffle Towers):

در این نوع از برج های استخراج، انرژی مکانیکی لازم را همزن های داخلی نصب شده روی میله دوار مرکزی تأمین می سازد. دیسک های مسطح مایعات را پراکنده و به طرف دیواره برج می رانند. در آنجا حلقه های استاتور (Stator rings) مناطق ساکنی را ایجاد کرده و دو فاز از یکدیگر جدا می شوند.

معرفی انواع برج های جداسازیمعرفی انواع برج های جداسازیمعرفی انواع برج های جداسازی

تصاویر بالا نمونه هایی از برج های استخراج همزن دار می باشند

۷- استخراج کننده با دیسک چرخان  RDC و استخراج کننده CM:

استخراج کننده CM از پره های توربینی دیسکی با پره های ساخت برای پخش و مخلوط کردن مایعات استفاده می کند. همچنین از صفحات افقی برای کاهش اختلاط محوری استفاده می نماید. دستگاه RDC خیلی مشابه CM است با این تفاوت که بافل های عمودی در آن وجود ندارد و همزدن در اثر دیسک های چرخان انجام می شود که معمولاً سرعت بیشتری از پره های توربینی دارند.

معرفی انواع برج های جداسازی

نمونه ای از استخراج کننده RDC

طراحی برج تقطیر

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

روش مک کیب

روش مک کیب-تیل (به انگلیسی: McCabe–Thiele method) روشی در مهندسی شیمی است که برای طراحی برج‌های تقطیر پالایشگاهی و صنعتی استفاده می‌شود. در برج‌های تقطیر صنعتی، تعدادی صفحهٔ بزرگ در فاصله‌های معین قرار دارند که سینی نامیده می‌شوند. بر اثر انتقال جرم بین بخار که در ریبویلر ایجاد می‌شود و مایعی که از کندانسور ریزش می‌کند، جداسازی در طی طول برج و بر روی سینی‌ها انجام می‌شود

.در این روش، محاسبهٔ تعداد سینی‌های مورد نیاز در طراحی برج‌های تقطیر صنعتی و پالایشگاهی با روش ترسیمی بیان می‌شود. برای این منظور نیاز به داشتن نموداری است که غلظت بخار و مایع در دماها و فشارهای مختلف در طی فرایند تقطیر را نشان داده باشد. این نمودار به «نمودار تعادلی» معروف است. در فرایند تقطیر ممکن است دو یا بیش از دو جز از یکدیگر جداسازی شوند، ولی در این روش فقط به جداسازی دو جز با فراریت‌های مختلف از هم پرداخته می‌شود.

ویژگی مهم این روش

ویژگی مهم روش مک کیب-تیل سادگی آن برای بیان یک فرایند پیچیده صنعتی و فیزیکی است، به‌طوری‌که با استفاده از یک نمودار ساده می‌توان به شکل کلی تغییرات داخل یک برج تقطیر را بررسی کرد. این روش اگرچه دارای خطای زیادی است ولی از لحاظ آموزشی دارای اهمیت بالایی است، طوری‌که تقریباً در تمام دانشگاه‌های جهان در رشته مهندسی شیمی تدریس می‌شود

.دیگر روش‌های موجود برای محاسبه سینی‌ها در برج تقطیر عبارتند از روش پانچون-ساواریت و معادله فنسک. این روش‌ها نسبت به روش مک کیب-تیل اطلاعات دقیق‌تری به دست می‌دهند ولی در عوض پیچیدگی محاسبات در آن‌ها بالاتر است. روش مک کیب-تیل نسبت به این روش‌ها ساده‌تر می‌باشد ولی خطای آن بیشتر است.

مخترعان این ر وش

روش مک کیب-تیل در سال ۱۹۲۵ میلادی، توسط دو مهندس شیمی به نام‌های وارن لی مک کیب و ارنست تیل که هر دو از دانش آموختگان دانشگاه MIT بودند، ارائه شد. فرض‌های اساسی این روش عبارت اند از:

برج تقطیر و عملکرد آن

در روش مک کیب-تیل منظور از برج‌های تقطیر، برج‌هایی هستند که در ابعاد بزرگ و در مصارف صنعتی تولید می‌شوند. این برج‌ها عمدتاً در پالایشگاه‌ها و برای جداسازی هیدروکربن‌های نفتی استفاده می‌شوند. برج‌های تقطیر استوانه‌هایی فلزی و بلند هستند که در درون آن صفحه‌هایی به نام سینی قرار دارد.

ورودی واحدهای تقطیر که به خوراک معروف است، مواد ناخالصی هستند که از دو یا چند جزء تشکیل شده‌اند و با ورود به برج تقطیر عمل جداسازی روی آن‌ها صورت می‌گیرد. ارتفاع، قطر، تعداد سینی، شرایط خوراک و… مواردی هستند که در علومی چون عملیات واحد و در مهندسی شیمی برای برج‌های تقطیر مورد بررسی و محاسبه قرار می‌گیرند.

سینی‌ها نقش مهمی در عمل جداسازی در داخل برج ایفا می‌کنند. به این صورت که در پایین برج واحدی به نام ریبویلر قرار داشته و مایع‌های پایین برج را می‌جوشاند و واحد کندانسور که در بالای برج قرار دارد به عکس، بخارهای بالای برج را مایع می‌کند. خوراک ورودی به برج از اجزا سبک (با فراریت زیاد) و سنگین (با فراریت کم) تشکیل شده‌است.

مباحث انتقال جرم

در اثر انتقال جرم بین بخارها که از پایین وارد سینی می‌شوند و مایع‌ها که از بالا به داخل سینی می‌ریزد، به تدریج مایع پایین برج از ماده سنگین و بخارهای بالای برج از ماده سبک غنی می‌شود. به این ترتیب مواد تشکیل دهنده خوراک ورودی بر اساس تفاوت در فراریت و دمای جوش از هم جداسازی می‌شوند. اصولاً زمانی از تفاوت در فراریت صحبت می‌شود که تفاوت در نقاط جوش اجزا، بیشتر از ۲۵ درجه سانتیگراد باشد. تعداد سینی‌ها نقش مهمی در کارایی یک برج تقطیر دارد که در روش مک کیب-تیل به محاسبه آن پرداخته می‌شود.

استفاده از روش مک کیب-تیل برای جداسازی خوراک دو جزئی امکان‌پذیر است و بر اساس روش ترسیمی با استفاده از داده‌های تجربی تعادل مایع-بخار می‌باشد. در این روش با فرض این که مایع و بخار بر روی هر سینی در حال تعادل ترمودینامیکی قرار دارند، تعداد سینی‌های تئوری محاسبه می‌شود که این تعداد از تعداد واقعی سینی‌های به کار رفته کمتر است. با در نظر گرفتن بازده هر سینی می‌توان به تعداد سینی واقعی به کار رفته در برج رسید.

افزایش زمان تماس فاز بخار و مایع موجب افزایش بازده سینی‌ها می‌شود. در روش مک کیب-تیل هدف محاسبه تعداد سینی‌های تئوری ({\displaystyle N_{T}}) می‌باشد.

توضیح نمادها

در رابطه‌های زیر نمادها به شرح زیر هستند:به قسمتی از ستون تقطیر که بالای سینی خوراک است را بخش غنی سازیو پایین سینی خوراک را بخش عاری سازی می‌گویند.

بخش غنی‌سازی برج

در این بخش که شامل سینی‌های بالاتر از سینی خوراک و کندانسور می‌باشد، جز سبک‌تر در فاز بخار غنی می‌شود. در بالای برج بخارهای خروجی به کندانسور رفته و پس از میعان بخشی از آن به داخل برج مجدداً تزریق می‌شود. این بخش با عنوان جریان برگشتی یا ریفلاکس شناخته می‌شود. برای به دست آوردن خط تبادل بالای برج تقطیر به صورت زیر عمل می‌کنیم.

ابتدا رابطهٔ موازنه کلی را اطراف کندانسور می‌نویسیم:

{\displaystyle V_{1}=L_{0}+D}

در رابطهٔ بالا چون مایع برگشتی از کندانسور ({\displaystyle L_{0}}) به سینی اول ریخته می‌شود و پیش از آن نیز سینی وجود ندارد از اندیس {\displaystyle 0} استفاده شده‌است.

همچنین نسبت برگشت را نیز به صورت زیر تعریف می‌کنیم:

{\displaystyle R={\frac {L_{0}}{D}}\!}

حال رابطه موازنه کلی را بر حسب نسبت برگشت بازنویسی می‌کنیم:

{\displaystyle V_{1}=(1+R)D}

همچنین با توجه به فرض اولیهٔ مک کیب، مبنی بر برابری جرم همه بخارها باهم و مایع‌ها با هم در بخش غنی‌سازی و همچنین در بخش عاری‌سازی با همدیگر خواهیم داشت: {\displaystyle L=L_{0}} و {\displaystyle V=V_{1}} همچنین موازنهٔ جرم را برای جز فرار حول کندانسور می‌نویسیم:

{\displaystyle Vy_{n+1}=Lx_{n}+Dx_{D}\longrightarrow y_{n+1}={\frac {L}{V}}\!x_{n}+{\frac {D}{V}}\!x_{D}}

این رابطه به رابطهٔ خط تبادل بالای برج معروف است. همچنین می‌توان این رابطه را بر حسب نسبت برگشت به صورت زیر بازنویسی کرد:

بخش عاری‌سازی برج

در این بخش، مایع از جز سنگین‌تر غنی شده و به پایین برج ریزش می‌کند. این بخش از برج شامل سینی‌های پایین‌تر از سینی خوراک و ریبویلر می‌باشد. مایع پس از ریزش به پایین، برج وارد ریبویلر شده و پس از جوشیده شدن، بخشی از آن به عنوان محصول پایینی خارج و بخشی دیگر به داخل برج دوباره تزریق می‌شود. مجدداً برای این بخش نیز مطابق روش بالا و این بار حول ریبویلر موازنهٔ جرم را انجام می‌دهیم. موازنهٔ کلی جرم حول ریبویلر:

{\displaystyle {\bar {L}}\!={\bar {V}}\!+W}

موازنهٔ جرم جز فرار حول ریبویلر:

{\displaystyle {\bar {L}}\!x_{m}={\bar {V}}\!y_{m+1}+Wx_{m}\longrightarrow y_{m+1}={\frac {{\bar {L}}\!}{{\bar {V}}\!}}\!x_{m}-{\frac {W}{{\bar {V}}\!}}\!x_{W}}

و در انتها با ترکیب رابطهٔ موازنهٔ کلی و رابطهٔ بالا خط تبادل پایین به دست می‌آید:

خط خوراک

خوراک عبارت است از مادهٔ خام ورودی به یک واحد که در تقطیر عبارت است از ماده‌ای که به برج وارد شده و مورد جداسازی قرار می‌گیرد. خوراک ورودی می‌تواند پنج حالت کلی از نظر ترمودینامیکی داشته باشد که در جدول زیر نشان داده شده‌است:

شرایط خوراک {\displaystyle f} {\displaystyle q}
مایع سرد (مایع در دمای زیر نقطه حباب) f<0 q>۱
مایع اشباع ۰ ۱
مخلوط دو فازی (مخلوط مایع و بخار) عددی بین ۰ و ۱ عددی بین ۰ و ۱
بخار اشباع ۱ ۰
بخار مافوق داغ f>۱ q<0

در جدول فوق {\displaystyle f} عبارت است از کسری از خوراک ورودی که به صورت بخار اشباع است و در نقطه مقابل {\displaystyle q} عبارت است از کسری از خوراک ورودی که به صورت مایع اشباع است. همواره برای یک خوراک ورودی جمع {\displaystyle f} و {\displaystyle q} برابر یک است یعنی:

{\displaystyle f+q=1}

از برخورد دادن دو معادلهٔ خط تبادل بالا و پایین برج که مربوط به بخش غنی‌سازی و عاری‌سازی است، معادلهٔ دیگری به نام معادلهٔ خط خوراک به دست می‌آید. خط کاملاً عمودی مایع اشباع، خط کاملاً افقی بخار اشباع، خطوط بین حالات افقی و عمودی حالت دو فازی، خط مجاور خط عمودی حالت مایع سرد و خط مجاور خط افقی حالت بخار مافوق داغ را نشان می‌دهد.

با استفاده از این معادله و ترسیم آن، می‌توان مکان سینی مناسب برای ورود خوراک را به دست آورد.

رسم نمودار و محاسبه تعداد سینی‌ها

برای محاسبهٔ تعداد سینی‌ها و محل سینی خوراک، ابتدا می‌باید نمودار تعادلی بخار-مایع برای دو مادهٔ موجود در مخلوط خوراک را داشته باشیم. در این نمودار که در شکل نشان داده شده‌است، کسر مولی جز فرار در فاز بخار محور عمودی (y) و کسر مولی جز فرار در فاز مایع محور افقی (x) است.

خط تعادل که در این نمودار به صورت ایدئال در نظر گرفته شده‌است در بالای خط {\displaystyle y=x} و به صورت یک قوس رسم شده‌است. ناحیه بین خط تعادلی و خط {\displaystyle y=x} ناحیه دو فازی است. از آنجایی که جداسازی در ناحیهٔ دو فازی رخ می‌دهد، خطوط تبادل و خط خوراک در این ناحیه قرار دارند.

مراحل رسم نمودار

خطوط تبادل و خط خوراک، خطوطی ساده فرض می‌شوند که مطابق معادلات گفته شده با داشتن شیب و عرض از مبدأ آن‌ها می‌توان ترسیمشان کرد. برای خط تبادل بالا شیب نمودار برابر {\displaystyle {\frac {L}{V}}\!} و عرض از مبدأ برابر {\displaystyle {\frac {L}{V}}\!x_{D}} است. همچنین برای خط تبادل پایین نیز شیب برابر با {\displaystyle {\frac {{\bar {L}}\!}{{\bar {V}}\!}}\!} و عرض از مبدأ برابر است با {\displaystyle {\frac {W}{{\bar {V}}\!}}\!x_{W}}. در صورت رسم صحیح دو خط، نقطه تقاطع این دو خط بر روی خط خوراک خواهد بود. در نتیجه با داشتن تنها شیب خط خوراک می‌توان از نقطه تقاطع دو خط تبادل، خط خوراک را رسم کرد.

ادامه کار

در ادامه می‌باید محل {\displaystyle x_{D}} و {\displaystyle x_{W}} و {\displaystyle x_{f}} را بر روی نمودار تعادلی مشخص نمود. (همواره {\displaystyle x_{D}} بزرگتر از {\displaystyle x_{W}} است و {\displaystyle x_{f}} در مکانی بین این دو قرار دارد) سپس از نقطهٔ {\displaystyle x_{D}} که خط تبادل بالا نیز از آنجا شروع می‌شود، به صورت افقی و عمودی خطوطی رسم می‌کنیم تا به {\displaystyle x_{W}} برسیم.

این خطوط همواره باید بین خطوط تبادل و خط تعادلی مایع-بخار باشد. در صورت رسم صحیح نمودار، تعدادی شکل مثلثی یا پله مانند به وجود می‌آید. تعداد این پلکان‌ها همان تعداد سینی‌های تئوری برج تقطیر است. همچنان که در شکل روبرو مشاهده می‌شود، محل تلاقی دو خط تبادل یا همان خط خوراک در محدودهٔ مثلث سوم است، در نتیجه خوراک می‌باید از سینی سوم وارد شود.

تصحیح تعداد سینی‌ها

ریبویلرها و کندانسورها به دو صورت کلیو جزئیهستند. در کندانسورهای جزئی، تنها بخشی از بخار که به داخل برج بر می‌گردد (ریفلاکس) به مایع تبدیل می‌شود و مابقی به‌صورت بخار خارج می‌شود اما در نوع کلی، همهٔ بخار ورودی به کندانسور به مایع تبدیل می‌شود؛ در مورد ریبویلرها نیز به همین ترتیب است.

در صورتی که کندانسور از نوع جزئی باشد، سینی شماره یک (پله شماره ۱) در شمارش تعداد سینی‌ها آورده نمی‌شود و در صورتی که از نوع کلی باشد سینی اول نیز شمارش می‌شود. زیرا در کندانسورهای جزئی، کندانسور خودش به صورت یک سینی عمل می‌کند چون فاز مایع و بخار همانند سینی در حال تعادل هستند که می‌تواند باعث جداسازی شود. در مورد ریبویلرها نیز به همین ترتیب برای سینی آخر (پله آخر) تصمیم‌گیری می‌کنیم.

حالت‌های خاص در روش مک کیب-تیل

شرایطی که در بالا مورد بررسی قرار گرفت ساده‌ترین حالت یک برج تقطیر یعنی یک خوراک ورودی و محصول بالا و پایین است. اما ممکن است در برخی شرایط تغییراتی در شکل و نحوهٔ جداسازی در برج انجام گیرد که در ادامه به تعریف آن‌ها و بررسی معادلات آن می‌پردازیم.

بیشترین میزان برگشت، کمترین تعداد سینی
{\displaystyle y_{n+1}={\frac {L}{V}}\!x_{n}+{\frac {D}{V}}\!x_{D}\longrightarrow y_{n+1}=x_{n}}
خط تبادل پایین

همچنین برای خط تبادل پایین نیز جرم محصول خروجی پایین ({\displaystyle W}) برج برابر صفر بوده و مقدار ({\displaystyle {\bar {L}}}) و ({\displaystyle {\bar {V}}}) با هم برابرند:

همان‌طور که مشاهده می‌شود این دو خط بر خط {\displaystyle y=x} منطبق هستند. برای محاسبهٔ تعداد سینی‌ها مطابق روش گفته شده تعداد پلکان‌ها را شمارش می‌کنیم. نکته مهم در این قسمت شمارش پله اول و آخر است زیرا کندانسور و ریبویلر از نوع کامل هستند.

کمترین میزان برگشت، بیشترین تعداد سینی

در این شرایط کمترین جرم ممکن از بخار به داخل برج بازگردانده می‌شود. برای این منظور می‌باید از {\displaystyle x_{D}} به محل تلاقی خط خوراک با خط تعادل وصل کرد تا خط تبادل بالا به دست آید. شیب و عرض از مبدأ این معادله برابر با شیب و عرض از مبدأ خط تبادل با کمترین نسبت برگشت ممکن است. با استفاده از رابطهٔ زیر می‌توان کمترین مقدار نسبت برگشت را محاسبه کرد:

{\displaystyle y_{n+1}={\frac {R}{R+1}}\!x_{n}+{\frac {x_{D}}{R+1}}\!}

شیب و عرض از مبدأ این معادله، برابر با شیب و عرض از مبدأ خط ترسیم شده‌است. برای خط تبادل پایین نیز از {\displaystyle x_{W}} به محل تلاقی خط خوراک و خط تعادلی رسم می‌شود و مطابق خط تبادل بالا شیب و عرض از مبدأ این خط برابر با شیب و عرض از مبدأ خط تبادل پایین با کمترین نسبت برگشت ممکن است.

همچنین در این حالت تعداد سینی‌ها به بی‌نهایت می‌رسد. در نتیجه به‌طور کلی می‌توان گفت که هر قدر خطوط تبادل به سمت خط تعادل میل کند، تعداد سینی‌ها نیز بیشتر می‌شود.

استفاده از بخار مستقیم

در برخی موارد به علت وجود یک بویلر مرکزی در واحد صنعتی، از یک ریبویلر مخصوص برای برج تقطیر استفاده نمی‌شود و مایع پایینی برج پس از خروج به بویلر فرستاده شده و بخار خروجی از بویلر مجدداً به پایین برج تزریق می‌شود.

در این حالت و با در نظر گرفتن جریان‌های ورودی و خروجی به پایین برج، معادلهٔ خط تبادل پایین به صورت زیر بازنویسی می‌شود:

{\displaystyle y_{m+1}={\frac {W}{S}}\!x_{m}-{\frac {W}{S}}\!x_{w}}

اگر خط تبادل با خط ({\displaystyle y=x}) برخورد داده شود در نقطه {\displaystyle x={\frac {-{\frac {W}{S}}\!}{1-{\frac {W}{S}}\!}}\!x_{W}} همدیگر را قطع می‌کنند

همچنین خط تبادل پایین در نقطهٔ ({\displaystyle x_{W}}) با محور {\displaystyle x} برخورد می‌کند. در نتیجه با در نظر گرفتن این دو نقطه (علاوه بر روش شیب و عرض از مبدأ) خط تبادل پایین قابل رسم است.

در این حالت خط تبادل بالا تغییر نمی‌کند و مانند قبل از نقطهٔ ({\displaystyle x_{D}}) تا خط خوراک رسم شده و با خط تبادل پایین برخورد می‌کند.

برج با چند خوراک ورودی

ممکن است در یک برج تقطیر بیش از یک خوراک وارد شود. در این شرایط به تعداد خوراک اضافه شده، خط تبادل جدید افزوده می‌شود و با رسم نمودار می‌توان محل سینی هر خوراک را تعیین کرد. خطوط تبادل بالا و پایین تغییر نمی‌کند ولی خطی جدید با معادلهٔ زیر برای ناحیهٔ بین دو خوراک ورودی خواهیم داشت:

{\displaystyle y_{z+1}={\frac {L’}{V’}}\!x_{z}+{\frac {Dx_{D}-F_{1}x_{f_{1}}}{V’}}\!}

بدیهی است که با افزوده شدن خوراک‌های جدید تنها تعداد عبارت‌های {\displaystyle Fx_{f}} در {\displaystyle {\frac {Dx_{D}-F_{1}x_{f_{1}}}{V’}}\!} اضافه می‌شود.

روش ترسیمی برای این حالت نیز مانند قبل است، با این تفاوت که فقط یک خط تبادل دیگر نیز افزوده می‌شود.در اینجا {\displaystyle V’} نشان دهندهٔ بخار در حال صعود و {\displaystyle L’} نشان دهندهٔ مایع در حال ریزش در قسمت بین دو خوراک ورودی است. همچنین اندیس {\displaystyle z} به این دلیل به کار می‌رود تا با معادلات خط تبادل بالا و پایین اشتباه نشود. به‌طور کلی با اضافه شدن خوراک جدید یا محصول جانبی، تعداد تقسیم‌بندی‌های برج زیاد شده و نام گذاری‌ها تغییر می‌کند.

برج با محصول جانبی

گاهی مواقع به محصول جانبی با کیفیت پایین‌تر از محصول بالایی برج نیاز داریم. در این شرایط با گرفتن یک خروجی از قسمت‌های پایین‌تر برج، این محصول به‌دست می‌آید. با استفاده از روش مک کیب-تیل می‌توان با داشتن اطلاعات محصول جانبی مورد نیاز، محل سینی مناسب برای خروج محصول جانبی را تعیین کرد. در این حالت نیز به تعداد محصول جانبی خارج شده از برج، خط تبادل اضافه می‌شود.

نکات مهم

نکتهٔ مهم در این قسمت این است که برخلاف حالت چند خوراک، شیب خط تبادل وسط نسبت به خط تبادل بالا کاهش می‌یابد. به‌طور کلی می‌توان گفت که ورود خوراک جدید موجب افزایش شیب خطوط تبادل میانی شده و خروج محصول جانبی نیز موجب کاهش شیب خطوط تبادل میانی می‌شود.

خط تبادل میانی در این حالت از معادلهٔ زیر پیروی می‌کند:

{\displaystyle y_{z+1}={\frac {L’}{V’}}\!x_{z}+{\frac {Dx_{D}+S_{1}x_{S_{1}}}{V’}}\!}

که در این رابطه {\displaystyle S_{1}} جرم محصول جانبی خروجی و {\displaystyle x_{S_{1}}} کسر مولی جز فرار در محصول جانبی خروجی است.

بدیهی است که با افزوده شدن محصولات جانبی جدید تنها تعداد عبارت‌های {\displaystyle Sx_{s}} در {\displaystyle {\frac {Dx_{D}-S_{1}x_{S_{1}}}{V’}}\!} اضافه می‌شود.

روش مک کیب-تیل برای تقطیر آزئوتروپی

محلول‌های هم جوش یا آزوئروپ محلول‌هایی هستند که فراریت دو جز در آن‌ها متغیر است به‌طوری‌که در نمودار {\displaystyle x-y} آن‌ها تا بخشی از نمودار فراریت جز مثلاً A بیشتر است و از آن به بعد فراریت جز B بیشتر خواهد بود. در نتیجه در نمودار بر خلاف حالت ایدئال (مطابق قانون رائولت)، بخشی از نمودار بالای خط {\displaystyle y=x} و بخش دیگر زیر آن قرار خواهد گرفت.

جداسازی

برای جداسازی محلول‌های آزئوتروپ روش‌های زیادی پیشنهاد شده‌است اما بهترین آن استفاده از چند برج تقطیر به صورت سری است که طی این فرایند با هر بار جابجایی نمودار از بالای خط {\displaystyle y=x} به پایین و بر عکس یک برج جدید به مجموعه اضافه می‌شود. روش مک کیب-تیل برای این حالت نیز از اصول گفته شده پیروی می‌کند با این تفاوت که می‌باید برای هر برج به‌طور جداگانه اجرا شود.

در نتیجه مثلاً برای محلولی با یک نقطه آزئوتروپ که از دو ناحیه بالا و پایین خط {\displaystyle y=x} تشکیل شده‌است، چهار خط تبادل خواهیم داشت که دو تای آن در ناحیه بالای خط {\displaystyle y=x} و دو تای دیگر زیر خط {\displaystyle y=x} رسم خواهد شد. همچنین هر بخش نشان دهنده تعداد سینی‌های مربوط به یک برج است چرا که دو یا چند برج در این حالت به کار رفته‌است.

طراحی پمپ سانتریفیوژ(گریز از مرکز)

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی:

بیشتر فرآیندهای صنعتی شامل انتقال مایعات یا انتقال انرژی است. این کار به لطف پمپ های گریز از مرکز که محبوب ترین توربوماشین ها هستند، امکان پذیر شده است. رشد و پیشرفت فرآیندهای صنعتی همواره با پیشرفت تجهیزات پمپاژ مرتبط بوده است. پمپ های گریز از مرکز به دلیل ظرفیت آنها برای استفاده در جریانهای شدید، بیش از 85٪ از تولیدات جهانی پمپ ها را تشکیل می دهند.

این پمپ ها برای کاربردهای مختلف از جمله تقویت فشار، فاضلاب، تأمین آب، توزیع گرمایش و سرمایش و سایر کاربردهای صنعتی مورد استفاده قرار می گیرند. مهندسین عملیاتی در چنین صنایعی باید نه تنها درک خوبی از روند فرآیند ها بلکه از اجزای پمپ ها نیز داشته باشند.

پمپ گریز از مرکز چیست؟

به زبان ساده ، پمپ سانتریفیوژ ماشینی است که به مایع یا سیال انرژی می دهد تا مقدار ارتفاع آن افزایش یابد. این پمپ متعلق به کلاس ماشین های چرخشی است. این دستگاه با توجه به اینکه اولین دستگاه در اواخر 1600 طراحی شده است، به اندازه کافی مورد آزمایش واقع شده است.

با این حال، بیشترین کاربرد آن در قرن گذشته بوده است. پمپ های جابجایی مثبت قبل از آن محبوب تر بودند. ما می توانیم بیشتر این رشد را به دلیل توسعه موتورهای احتراق داخلی ، موتورهای برقی و توربین های بخارکه برای حرکت به پمپ های گریز از مرکز نیاز دارند، مرتبط بدانیم.

چرا این پمپ ها امروزه بسیار محبوب هستند؟ پمپ های گریز از مرکز به دلیل بهترین نسبت کارایی به هزینه بالاتر در مقایسه با سایر نوع پمپ ها یا دستگاه های مورد استفاده در انتقال مایعات استفاده می شوند.

اصول کار یک پمپ گریز از مرکز

به طور معمول، یک پمپ گریز از مرکز از یک محفظه پر از مایع تشکیل شده است. این مایع می تواند هر چیزی باشد،اما در بیشتر موارد آب است. یک جزء درون محفظه (پروانه) با سرعتی بالایی می چرخد و در نتیجه مایعات را تحت نیروی گریز از مرکز قرار می دهد. به دلیل این ایجاد نیرو، مایع به سمت خروجی تخلیه می شود.

با تخلیه آب، خلاء ای ایجاد می شود که منجر به شکل گیری فشار اتمسفر می شود  و باعث می شود مایعات بیشتری از محفظه خارج شود. بخشی از دلیل بی نقص بودن این حرکت به دلیل است که پره ها روی پروانه دارای انحنا هستند.

حرکت سیال درون یک پمپ گریز از مرکز

ایده پمپ گریز از مرکز تبدیل نیروی گریز از مرکز به انرژی جنبشی است. چرخش پروانه به مایعات نیرو محوری می دهد که متناسب با سرعت در نوک پره است. با بیرون آمدن مایعات ، انرژی جنبشی دارد. این انرژی جنبشی به دلیل مقاومت در نازل تخلیه و حلزونی پمپ بیشتر در ادامه فشاری تبدیل می شود.

پارامترهای طراحی مکانیکی پمپ

مفید بودن مکانیکی و هیدرولیکی پمپ گریز از مرکز برای اثربخشی و قابلیت اطمینان سیستم بسیار مهم است. اندازه بیش از اندازه یا کم آن می تواند منجر به وقوع مشکلات در طول عمر کاری سیستم شود.

این فاکتورها مربوط به هر دو مشخصات مکانیکی و هیدرولیکی پمپ هستند. ملاحظات مکانیکی عبارتند از: شرایط پمپاژ ، آب بندی پمپ و هندسه پروانه. به طور کلی، شما باید در عمل بین راندمان و هزینه در هنگام طراحی هندسه تعادل برقرار کنید.

ملاحظات هیدرولیکی شامل نقطه کاری، سرعت جریان، مشخصات سیال و مقاومت سیستم است.

شما نمی توانید هنگام طراحی یا نصب پمپ گریز از مرکز ، شرایط مکش را نادیده بگیرید. یک مفهوم مهم در این زمینه هد خالص مکش مثبت (NPSH) است، که به معنی هد مورد نیاز در مکش پمپ در یک شرایط کاری خاص جهت جلوگیری از مشکلات وقوع کاویتاسیون است.

NPSH مورد نیاز فقط به طراحی سازنده پمپ بستگی دارد: پوشش، پروانه، نازل … این داده ها توسط سازنده به عنوان منحنی ارائه می شوند و NPSH موجود به شرایط مکش پمپ بستگی دارد.: فشار مایع، دما، بخار فشار سیال، سر مکش یا بالابر مکش … این داده ها توسط طراح نصب محاسبه می شود. برای انجام این محاسبات از روابط دقیق ریاضی مهندسی استفاده می گردد.

طراحی و عملکرد پمپ گریز از مرکز

دو قسمت اصلی در یک پمپ گریز از مرکز وجود دارد که عبارتند از قسمت ثابت و قسمت دوار. قطعات مانند اجزای نشان داده شده  در شکل 2 در پایین است. قطعات ثابت عبارتند از محفظه ، نازل و بلبرینگ.

قطعات چرخان عبارتند از پروانه و شفت (میله). به غیر از این قسمت های اصلی ، پمپ گریز از مرکز همچنین دارای اجزای کمکی است که شامل سیستم های خنک کننده ، کنترل و روانکاری می باشد.

اجزای یک پمپ سانتریفیوژ

در هنگام انتخاب قسمت های محتلف یک پمپ گزینه های طراحی بسیاری وجود دارد. روکش مونوبلوک یا اسپلیت، مکش دوگانه، مکش انتهایی، خط ورودی، پروانه بسته یا باز، ساخت افقی یا عمودی ، تک مرحله یا چند مرحله و غیره تولید کننده محصولات مختلفی با ترکیب متفاوت قطعات برای رسیدن به نیازهای خاص هر فرآیند را دارد. به عنوان مثال  پروانه باز برای سیال با جامد معلق استفاده میشود.

پروانه

پروانه مهم ترین عضو یک پمپ است. پروانه یک پمپ گریز از مرکز به سرعت چرخش می یابد تا سرعت را به مایع پمپاژ شونده منتقل کند. اگر قبلاً پروانه پمپ را ندیده اید، پروانه قایق را تجسم کنید. هنگامی که یک پروانه قایق چرخانده می شود ، سرعت را به مایع اطراف آن منتقل می کند. با حرکت مایع، این سرعت پروانه را وادار به حرکت می کند تا در آب حرکت کند.

حال تصور کنید چه اتفاقی می افتد اگر قایق در محل قرار گیرد، آنقدر محکم باشد که از حرکت قایق جلوگیری کند. بعد تصور کنید که سرعت تولید شده توسط پروانه قایق  به طوری کنترل شده است که جریانی از آب ایجاد می شود تا شما بتوانید در به سمت مکان دلخواه خود حرکت کنید.

در پمپ گریز از مرکز شما پروانه ای دارید که به سرعت می چرخد ​​و سرعت را به مایع موجود در پمپ منتقل می کند درست همانطور که یک پیشران قایق سرعت را به آب یک دریاچه منتقل می کند. محفظه، بخشی از ساختار پمپ است که سرعت آن را می گیرد ، آن را شامل می شود، آن را را کنترل می کند و به سمت جهت مطلوب می فرستد.

هر پروانه دارای 1 یا بیشتر پره است که از مرکز پروانه  به سمت محیط خارجی آن کشیده شده اند. با چرخش پروانه، نیروی گریز از مرکز باعث می شود تا مایع به سرعت از مرکز پروانه، در امتداد پره ها حرکت کند و سپس از پروانه در خارجی ترین قطر خارج شود. نتیجه این است که مایع پمپ شده از محیط پروانه با سرعت بسیار بالایی خارج می شود.

انتخاب پمپ

انتخاب هیدرولیکی

در مورد فرآیند انتخاب پمپ گریز از مرکز: ظرفیت، هد و هد خالص مکش مثبت (NPSH) پارامتر های مهم هستند. آن ها در مراحل کلی زیر در انتخاب پمپ گریز از مرکز تعیین کننده هستند:

مرحله 1: محاسبه نرخ حجمی مورد نیاز

نرخ حجمی به حجم سیال عبور داده  شده در واحد زمان از درون پمپ اشاره دارد. این پارامتر با نوع فرآیند و تعداد پمپ هایی که نصب می شود تعیین می شود.

مرحله 2: محاسبه هد استاتیکی

هد استاتیک به تفاوت در ارتفاع بین بالاترین نقطه در جایی که می خواهید آب را تحویل مصرف کننده بدهید  و ارتفاع منبع آب، اشاره دارد. همانطور که از نام آن پیداست ، هد استاتیک ثابت است، یعنی با تغییر دبی سیستم دچار تغییر نمیشود.

مرحله 3: محاسبه هد اصطکاکی

برای محاسبه اتلاف هد در اثر اصطکاک، باید تمام عناصر موجود در سیستم لوله وصل شده به پمپ را در نظر بگیرید: لوله، اتصالات، مبدل های حرارتی، شیرها و… با تعیین خصوصیات اصطکاکی این عناصر و خصوصیات سیال، هد اصطکاکی محاسبه می شود.

مرحله 4: محاسبه هد کل

شما می توانید با جمع کردن هد استاتیک و هد اصطکاکی، هد کل را بدست آورید.

مرحله 5 : انتخاب پمپ گریز از مرکز

تولید کنندگان پمپ های گریز از مرکز دارای پمپ هایی برای اهداف خاص هستند. منحنی های پمپ به صورت نرخ حجمی در برابر هد پمپ در دسترس هستند تا به شما در انتخاب قطر پروانه مناسب کمک کند. از مقادیر محاسبه شده در مرحله 1 و مرحله 4 استفاده کنید تا یک پمپ مناسب از طریق منحنی های پمپ پیدا کنید.

گزینه دارای بیشتری راندمان را از بین پمپ های ممکن انتخاب کنید و همچنین بررسی کنید که NPSH مورد نیاز پمپ کمتر از NPSH موجود در نصب است تا اطمینان حاصل شود که مایع باعث خرابی یا کاویتاسیون در پمپ نمی شود. جنبه های دیگر مانند اندازه پروانه یا موقعیت نقطه کاری بایستی در منحنی در نظر گرفته بشود.

محدودیت های پمپ گریز از مرکز

عملکرد کارآمد پمپ گریز از مرکز به چرخش ثابت و پر سرعت پروانه آن متکی است. با تغذیه ویسکوزیته بالا، پمپ های گریز از مرکز به طور فزاینده ای ناکارآمد می شوند: مقاومت بیشتری وجود دارد و برای حفظ یک جریان خاص، فشار بیشتری لازم است. به طور کلی، پمپ های گریز از مرکز به دلیل فشار کم، ظرفیت بالا، پمپاژ مایعات با ویسکوزیته بین 0.1 تا 200 سی پی مناسب هستند.

مواد دوفازی مانند گل و لای یا روغن های بسیاز لزج می توانند باعث سایش فراوان و گرمای بیش از حد شوند که منجر به آسیب و خرابی زودرس شود. پمپ های جابجایی مثبت اغلب با سرعت بسیار پایین تر کار می کنند و کمتر در معرض این مشکلات قرار دارند.

هر وسیله پمپ شده ای که به برش حساس است (جداسازی امولسیون یا مایعات بیولوژیکی) می تواند در اثر سرعت زیاد پروانه پمپ گریز از مرکز آسیب ببیند. در چنین مواردی سرعت پایین پمپ جابجایی مثبت ترجیح داده می شود.

یک محدودیت دیگر این است که بر خلاف پمپ جابجایی مثبت، یک پمپ گریز از مرکز نمی تواند در صورت خشک شدن مکش را فراهم کند: پمپ از همان ابتدا باید پر از مایع باشد. بنابراین پمپ های گریز از مرکز در هیچ کاربردی که عرضه جریان سیال متناوب باشد مناسب نیست.

علاوه بر این، اگر فشار تامینی متغیر باشد، پمپ گریز از مرکز جریان متغیر را از خود عبور میدهد. پمپ جابجایی مثبت نسبت به تغییر فشارها حساس نیست و خروجی ثابت را فراهم می کند. بنابراین ، در کاربرد هایی که نیاز به دوز دقیق است، پمپ جابجایی مثبت ترجیح داده می شود.

جمع بندی

پمپ گریز از همانطور که در بالا به آن اشاره شد مرکز یک وسیله ساده اما اساسی است. با وجود انواع مختلفی از پمپ های موجود، طراحی مناسب مهمترین نیاز برای هر نوع کاربرد است. به طور کلی، اطمینان از عدم وجود کاویتاسیون و همچنین حفظ جریان مداوم کافی است. تنها طراحی مناسب با استفاده از مراحل ذکر شده در بالا می تواند تضمین کند که پمپ متناسب با شرایط تعیین شده است.

کود شیمیایی چیست؟چگونه تولید میشود؟

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

در حال حاضر، کودهای شیمیایی (اصطلاحا کود سیاه و کود سفید) در تامین چیزی در حدود 40 تا 60% از منابع غذایی جهان نقش دارند. کودهای شیمیایی شامل یک یا چند منبع غذایی مورد نیاز گیاهان هستند که می توانند به هر سه صورت فازهای جامد مایع و یا گاز وجود داشته باشند. کودشیمیایی می تواند هم به خاک اضافه شود، هم مستقیم به خود گیاه پاشیده شود (برگ های گیاه) ویا آن را در آب حل کرد و به خاک گیاه اضافه کرد. کودشیمیایی به منظور ارتقاء کیفیت خاک، افزایش میزان محصول و یا ارتقاء کیفیت محصول تولیدی مورد استفاده قرار می گیرد.

قدمت بهره گیری از کود شیمیایی به قرن نوزدهم میلادی بر می گردد. زمانی که با گسترش صنعت کشاورزی، میزان کودهای حیوانی و یا گیاهی مورد نیاز با محدودیت مواجه شد. اولین تلاش ها برای تولید کود شیمیایی در مقیاس صنعتی از استخراج پتاسیم از معادن آلمان در سال 1860 شروع شد که در حدود همان سال ها نیز اولین واحد تولید کود شیمیایی فسفات از فسفات اوره در مقیاس تجاری نیز شکل گرفت.

کود های غیر ارگانیک را می توان به سه دسته کلی نیتروژنه فسفاته و پتاسه تقسیم کرد:

1- کودهای نیتروژنی یا ازته یا اصطلاحا کود سفید (N) :

کود شیمیایی سفید حاوی عنصر نیتروژن به شکل نیترات است که این عنصر برای رشد بسیاری از گیاهان لازم و ضروری می باشد و از این جهت از این کود می توان به منظور کمک به رشد طیف وسیعی از گیاهان استفاده کرد. قابلیت انحلال خیلی خوبی دارد و به راحتی در آب حل می شود و به سرعت در دسترس گیاه قرار می گیرد.

کود سفید

برخی از کود های نیتروژنه عبارتند از:

چگونگی تولید:

این کود ها اغلب از گاز طبیعی به دست می آیند.در طی چندین مرحله گاز طبیعی، به ویژه متان، با نیتروژن موجود در هوا ترکیب می شود تا بتوان کود های نیتروژنه تولید نمود. توجه نمایید که 80٪ از گاز طبیعی برای ساخت کود های نیتروژنه استفاده می شود. این در حالیست که تنها 20٪ از گاز برای فرایند های گرمایشی و تولید برق مورد استفاده قرار می گیرد

با کمک این گاز دو ماده اساسی نیترات آمونیوم و اوره تولید می شود  و سپس با اضافه کردن انواع مختلفی از افزودنی ها می توان کود های نیتروژنه ی مختلفی تولید نمود. به عنوان مثال برای ساخت کود کامل از افزودنی فسفر و پتاسیم استفاده می شود.  از افزودنی دولومیت برای تشکیل CAN استفاده می شود و یا با مخلوط نمودن اوره و محلول نیترات آمونیوم می توان UAN را تولید نمود 

2- کودهای فسفاته یا اصطلاحا کود سیاه (P) :

بعد از کودهای نیتروژنی ، این نوع از کودهای شیمیایی پرمصرف ترین نوع کود در جهان محسوب می شوند. این ترکیبات برای رشد مناسب ریشه های گیاه ضروری هستند. به افزایش بازده برداشت محصول کمک می کنند و مقاوت گیاهان را در برابر انواع بیماری ها افزایش می دهند. کود شیمیایی سیاه عنصر فسفر را برای انواع گیاهان اعم از گلدانی، درخت و زراعی تامین می کند. 

کود سیاه

برخی کود های فسفاته عبارتند از:

چگونگی تولید:

کود های فسفاته با اسیدیته نمودن سنگ های فسفاته تولید می شوند. باید توجه نمود که سنگ فسفات به خودی خود محلول نیست و بنابراین نمی تواند فسفر را در اختیار گیاه قرار دهد. بسیاری از منابع فسفر ، رسوبات موجود در کف اقیانوس ها هستند که بعداً توسط طغیان زمین افزایش یافته اند. این رسوبات می توانند حاوی مواد معدنی مختلفی باشند ، بنابراین آلودگی این سنگ ها به فلزات سنگین مانند کادمیوم از دیگر مسائلی است که باید به آن توجه نمود.

منابع دیگر سنگ فسفات از ذخایر سنگ آذرین ، به دست آمده از گدازه های مذاب آتشفشان ها می باشد. این منبع حاوی آلاینده های کمتری می باشد. معدن Yara در فنلاند، منبع خوبی برای به دست آوردن این نوع از سنگ های فسفاته به حساب می آید.

همانطور که گفته شد، این سنگ ها با اسید هایی مانند فسفریک، سولفوریک و یا نیتریک پردازش می شوند.

استفاده از هر کدام از اسید های ذکر شده، مزایا و معایب خاص خود را دارند. به عنوان مثال استفاده از اسید سولفوریک کود های فسفره با غلظت پایین تولید می کند، از جمله این مواد می توان به سوپر فسفات ساده اشاره نمود.

با این حال استفاده از اسید فسفریک می تواند غلظت های بالاتری از این مواد را تولید نماید.

استفاده از اسید نیتریک نیز تقریبا پسماندی از خود به جای نمی گذارد و دو کود تولید می کند:

1- نیترفسفاتها که برای تولید کودهای کمپلکس NPK مانند YaraMila با پتاسیم ترکیب می شود.

2-کلسیم نیتراتکه از ترکیب اسید نیتریک با کلسیم موجود در سنگ فسفات به دست می آید.

باید توجه نمود که محدودیت استفاده از اسید نیتریک به گونه است که هنگام استفاده از آن مقدار فسفات موجود در کود نمی تواند از مقدار نیتروژن بیشتر باشد.

 

تولید الکل صنعتی

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

اتانول چطور تولید می شود؟

اتانول یا اتیل‌ الکل یک مایع شفاف و بی‌رنگ است که ترکیب اصلی بسیاری از نوشیدنی‌های الکلی را تشکیل می‌دهد. در مقیاس صنعتی می‌توان از راه‌های هیدراتاسیون گاز اتیلن و یا فرآیند تخمیر به اتانول دست‌یافت. با استفاده از تخمیر؛ اتانول را می‌توان از هر محصول گیاهی که حاوی مقادیر زیادی شکر است، تولید کرد. هر ترکیبی هم که بتوان آن را به شکر تبدیل کرد در تولید اتانول استفاده می‌شود مانند نشاسته و سلولز.

نشاسته و سلولز در تولید اتانول

شکر چغندرقند و نیشکر؛ استخراج‌شده و تحت فرآیند قرار می‌گیرد. محصولاتی مثل ذرت ، گندم و جو حاوی نشاسته هستند، به شکر تبدیل می‌شوند و از آن اتانول تولید می‌کنند. عمده تولید اتانول ایالات‌متحده از نشاسته صورت می‌گیرد. منبع تأمین نشاسته هم عمدتاً از مزارع ذرت تأمین می‌شود.
منبع دیگر شکر در درخت‌ها و سایر گیاهان به‌صورت الیاف سلولزی وجود دارد. برای استفاده از سلولز، ابتدا باید آن را به شکر تخریب کرد و سپس شکر طی فرایند تخمیر، به اتانول تبدیل می‌شود. محصولات جانبی عملیات‌های جنگل‌داری هم، برای تولید اتانول با منبع سلولزی استفاده می‌شود. خاک‌اره، تکه‌های چوب، شاخه‌ها و ضایعات محصولات کشاورزی از موادی هستند که می‌توان از آن‌ها در تولید اتانول سلولزی استفاده کرد. برخی گیاهان نیز منحصراً برای تولید اتانول کشت می‌شوند.

فرآیند میلینگ

تولید اتانول عمدتاً در یک فرایند چهار مرحله‌ای انجام می‌شود:

میلینگ مرطوب

روش دیگری که برای تولید اتانول توسط تولیدکنندگان در مقیاس بزرگ استفاده می‌شود، میلینگ مرطوب است. در این فرآیند، یک مرحله خیس شدگی وجود دارد. پس‌ازآن تفاله غلات، روغن ، نشاسته و گلوتن جداسازی شده و برای تبدیل به محصولات ارزشمندتر تحت فرآیند قرار می‌گیرند. یکی از این محصولات شربت ذرت است که دارای مقادیر زیادی فروکتوز می‌باشد. این شربت به‌عنوان شیرین‌کننده در صنایع غذایی استفاده می‌شود. روغن ذرت هم محصول دیگری است که از محیط جداسازی شده و تحت پالایش قرار می‌گیرد. گلوتن تحت فرآیند میلینگ مرطوب جدا می‌شود و به‌عنوان ماده افزودنی در خوراک مورداستفاده قرار می‌گیرد.

خالص سازی اتانول

در فرآیند تولید اتانول پس از تخمیر، نوبت به مرحله‌ی تقطیر می‌رسد. در این مرحله اتانول تا حدود 96 درجه خالص می‌شود. در این مرحله از چند برج تقطیر سینی‌دار یا آکنده با جنس استیل وجود دارد. برای به دست آوردن خلوص بیشتر از چند روش می توان استفاده کرد:
استفاده از غربال ملکولی: در این روش از غربال ملکولی برای به دام افتادن مولکول‌های آب و افزایش درصد اتانول استفاده می‌شود.
استفاده از پمپ خلا: در این روش با کاهش فشار نقطه‌ی آزئوتروپ شکسته شده و الکل خالص به‌دست می‌آید.
روش تقطیر غشایی: در این روش با استفاده از تقطیر غشایی الکل 99.96 حاصل می‌شود.

گاز ترش

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

روش هاي تصفيه گاز و خصوصيات جذب كننده ها

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

گاز طبيعي را از وجود سولفيد هيدروژن هر چند كه مقدار آن كم باشد تصفيه مي كنند، چون مقدار مجاز آن در
لوله ها انتقال حداكثر 20 ميلي گرم در متر مكعب مي باشد.
در اغلب موارد تصفيه گاز را نه تنها براي جداسازي مواد زائد تا حد استاندارد، بلكه به منظور جداسازي مواد
ارزشمند صنعتي از آن انجام مي دهند. به عنوان مثال 30 % توليدات جهاني گوگرد از گازهاي طبيعي غني از سولفيدهيدروژن بدست مي آيد. بعضي از آنها مثل ميدان گازي هارمتن، پانتر- ريور، و باربري در كانادا و مي سي سي پي در آمريكا، ژائو لان گيوانگ در كره شمالي تا 70 % حجمي داراي سولفيد هيدروژن مي باشند.

در حال حاضر بيشترين روش ها، در تصفيه (شيرين سازي) گاز، به 2 گروه عمده ابسورپسيوني و ادسورپسيوني مربوط مي شود تعلق دارند. البته در بين آنها هم بيشترين روش ها در گروه اول جاي مي گيرند. روش ابسورپسيوني- جذب هوشمند مايعات و يا گازها توسط جذب كننده مايع (ابسوربنت)، را مي توان بدون توجبه مقدار اوليه درصد ناخالصي ها بكار گرفت.

روش ادسورپسيوني – جذب هوشمند مايعات و گازها در روزنه هاي جذب كننده 5% حجمي باشد، انجام پذير است. در اين روش تصفيه عميق – جامد (ادسوربنت)، در مواردي كه درصد ناخالصي تا 3 از گاز صورت مي گيرد.

روشهاي ابسورپسيوني

با توجه به خصوصيات ابسوربنت هاي مورد استفاده، به روش هاي: جذب شيميايي، جذب فيزيكي، جذب
تركيبي و اكسيداسيوني (اكسايشي) تقسيم مي شوند.
با تركيبات CO و 2 H2S روش هاي جذب شيميايي (كميسورپشن) 9 بر اساس تاثيرات (واكنش هاي) شيميايي
فعالي (ابسوربنت ها) چون آمين ها (منو، دي، تري و متيل دي اتانول آمين ها، دي ايزوپروپانول آمين) و بازها استوار است.

روش هاي جذب فيزيكي بر پايه حل فيزيكي مواد زائد در ابسوربنت هايي چون گليكول ها (دي و تري اتيلن
متيل پريليدون، تري بوتيل فسفات، سولفولان، متانول و غيره بنا نهاده شده است. – N ،( گليكول
روش هاي جذب تركيبي در استفاده هم زمان هر 2 فرآيند فوق (جذب شيميايي و فيزيكي) خلاصه مي شوند.
يكي از فرآيندهاي جذب تركيبي، فرآيند سولفينول است كه واحدهاي زيادي از آن احداث شده است. در واحدهاي
مدرن ، هم زمان از سولفولان و متيل دي اتانول آمين به عنوان ابسوربنت استفاده مي شود.

به گوگرد عنصري توسط جذب كننده ها H2S روش هاي جذب اكسيداسيوني براساس تبديل بازگشت ناپذير
استوار است. جذب كننده ها در اين روش حاوي كاتاليست هايي اكسيد كننده مي باشند و معمولا به شكل محلول
قليايي – آبي مثل تركيب محلول نمك 2 سديمي اتيلن دي آمين تترااستيك اسيد با كلريدآهن در آب و يا محلول گرم
نمك هاي نشادري فلزات قليايي هستند.

روش هاي ادسورپسيوني

در روزنه هاي جذب كننده جامد مثل كربن فعال و CO و H2S ، همانطور كه قبلا اشاره شد در اين روش ها يا زئوليت هاي سنتزي جذب مي شوند.

انتخاب هر كدام از اين روش ها مستلزم در نظر گرفتن فاكتورهاي مختلفي چون حد غلظت اوليه ونهاييH2S,CO2 موارد مصرف گاز تصفيه شده (در خانه ها، پتروشيمي و يا سوخت ماشين)، يا استفاده اقتصادي از يك جذب  كننده و غيره بستگي دارد ولي اساسي ترين آنها شامل غلظتCO2 ، و تركيبات گوگرددار آلي در گاز اوليه میباشد.

در زماني كه تركيبات اسيدي داراي فشار بخار بالايي در گاز باشند، بهتر است از روش هاي ابسوپشني بر پايه عدم جذب و يا جذب محدود هيدروكربن ها استفاده نمود كه شرط آن، حذف هيدروكربن هاي سنگين در مراحل اوليه میباشد.

در كل روش هاي جذب شيميايي و تركيبي در زماني استفاده مي شوند كه فشار بخار تركيبات اسيدي، بالا و يامتوسط باشند. در حال حاضر در مواقعي كه فشار بخار اين تركيبات كم باشد از روش هاي اكسيداسيوني استفاده میکنند.

انتخاب نوع جداساز

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

عوامل مختلفي در انتخاب نوع جداسازها موثرند كه جداساز بايد با توجه به اين عوامل انتخاب شود. به عنوان
مثال، جداسازهاي عمودي نسبت به نوسانات ارتفاع آب حساس نيستند، بنابراين براي تعيين ارتفاع آب در آنها، مي توان از ساختارهاي ساده و ارزان استفاده كرد. نسبت به فضاي اشغالي مي توانند راندمان بيشتري داشته باشند، ساختار داخلي ساده تري دارند و براي آن دسته از گازهايي كه داراي ذرات جامد هستند مناسب ترند.

از طرف ديگر جداسازهاي افقي با ابعاد يكسان نسبت به نوع عمودي خود، قادر به جداسازي مقدار گاز بيشتري مي باشند. دليل اين امر را مي توان در اين موضوع دانست كه در نوع عمودي سرعت گاز بايد به طوري باشد كه مايعات و اجسام جامد آن فرصت رسوب داشته باشند پس سرعت گاز بايد كمتر از سرعت رسوب باشد. بعلاوه ارتفاع مايعات آن نبايد از1/3حجم آن تجاوز كند و الا در كار جداسازي مشكل ايجاد مي شود.

ارتفاع جداسازها:

ارتفاع جداساز به خاطر افزودن ساختارهاي دروني آن است. درجداسازهاي عمودي مدرن ارتفاع دستگاه از 3 متر تجاوز نمي كند. افزايش بيشتر ارتفاع، در بازدهي گاز اثري ندارد. در صورتي كه در نوع عمودي مي توان از سرعت بيشتري استفاده نمود و ارتفاع مايعات مي تواند تا نيمي از حجم جداساز را بدون هيچ مشكلي پر كنند. در اين نوع جداسازها قطرات درشت تر در ورودي جداساز ته نشين مي شوند.

اين امر تا زمان خروج گاز ادامه دارد و هرچه در طول جداساز پيش رويم اندازه ذرات كوچك تر شده و مقدار آن در گاز نيز كاهش مي يابد. در خروجي، گاز با جريان ورودي برخوردي ندارد بنابراين احتمال وجود ناخالصي در گاز نيز وجود ندارد. طول مرز جداسازي دو فاز زياد است پس زمان كمتري براي جداسازي نياز است. بنابراين افزايش سرعت گاز در امر جداسازي اختلالي ايجاد نمي كند. پس افزايش طول باعث افزايش بازده گاز مي شود.

جداسازهای کروی:

در جداسازهاي كروي، سرمايه گذاري اوليه نسبت به واحد بازدهي گاز كمترين مقدار در بين جداسازهاست كه
اين مزيت اساسي اين نوع جداساها محسوب مي شود. از اين جداسازها زماني كه چاه دبي كم و ثابت دارد استفاده ميكنند چون مونتاژ و جايجايي آنها راحت است، تميز كردن آنها نيز آسان و فضاي زيادي را اشغال نمي كنند. بخصوص در جداسازي 2 مرحله اي، مي توان يكي را بر روي ديگري مونتاژ كرد.

فاكتورهاي موثر بر كار جداسازها:

فاكتورهاي مختلفي بر كار جداسازها موثرند. در اين بين، فشار، دما، تركيب گاز و چند مرحله اي بودن جداسازي بيشترين تاثير را دارند.

الف) فشار

با افزايش فشار، تراكم مواد زيادتر شده، بنابراين كندانسيشن بيشتر مي شود. بيشترين تراكم در بين هيدروكربن
ها در متان مشاهده شده و با افزايش جرم مولكولي هيدروكربن ها اين مقدار كاهش مي يابد. اين موضوع را مي توان در تشكيل “بخارهاي تنزلي” توضيح داد. در اين صورت افزايش فشار باعث افزايش دما شده تا حدي كه ماده در اين فشار به نقطه جوش خود مي رسد و تبخير مي شود. بنابراين افزايش فشار تا زماني كه باعث افزايش غير معمول نشود باعث جداسازي بيشتر مي شود.

ب) دما

تحقيقات نشان داده است كه هر چه دما كمتر شود، تبديل برش C5,C6 به مایع کمتر میشود.همچنین بیشترین حجم مایع در دماي 10 درجه سانتي گراد اتفاق مي افتد. همچنين نتيجه اين تحقيقات نشان داده شده است كه بيشترين  حجم جداسازي ميعانات تثبيت شده تا دماي 10 – درجه سانتي گراد اتفاق مي افتد.بنابراين اگر هدف اوليه از
جداسازي، بدست آوردن ميعانات تثبيت شده باشد، اينتروال ايده آل براي اين مورد، دماي 1- الي 10 – مي باشد.

ج) تركيب گاز

يكي از عوامل موثر در جداسازي، محتواي گاز مي باشد. در اين زمينه ميعانات هيدروكربني نقش زيادي را ايفاء
مي كنند. هرچه ويسكوزيته اين ميعانات بالاتر باشد، خروج ذرات گازي كه در اين ميعانات به دام افتاده اند كندتر
صورت مي گيرد. بنابراين كار جداساز به كندي پيش مي رود. در اين صورت بايد سرعت ورودي كمتر شود تا
جداسازي در فرصت بيشتري انجام شود.

د) چند مرحله بودن جداسازي

مسلما جداسازي ديفرنسيالي (چند مرحله اي) بيشترين و تثبيت شده ترين ميعانات را نسبت به جداسازي برخوردي (يا تك مرحله اي) به ما مي دهد. در جداسازي ديفرنسيالي، افت فشار در جداسازها به مرور صورت مي گيرد كه اين امر باعث مي شود در شرايط ملايم تري (يا روان تري)، ابتدا ذرات سنگين تر و در مراحل بعدي ذرات مايع سبك تر از گاز جدا شوند.

در اينجا لازم به ذكر است كه اين موضوع در زماني است كه محيط پراكندگي ما گاز وفاز پراكندگي مايع باشد. در حالتي هم كه محيط پراكندگي مايع و فاز پراكندگي گاز باشد، در جداسازي ديفرانسيلي، ابتدا ذرات گاز سبك تر و سپس ذرات سنگين تر جدا مي شوند. در جداسازي برخوردي در اثر افت سريع فشار، امكان ايجاد خلاء لحظه اي در دستگاه وجود دارد كه اين موضوع باعث رسيدن ميعانات سبك به نقطه جوش خود و ادقام آنها با گاز شود.

محاسبه يا طراحي جداسازها

با توجه به ساختارهاي دروني مختلفي كه در جداسازها وجود دارد، روش هاي متعددي در مورد طراحي
جداسازها وجود دارد. حتي براي محاسبه و يا طراحي يك نوع جداساز (افقي، عمودي، يا كروي و غيره) روش هاي مختلفي را پيشنهاد مي كنند كه پرداختن به همه آنها در اين فرصت كوتاه امكان پذير نيست. بنابراين در ذيل روشي پيشنهاد مي شود كه اصول كلي طراحي همه جداسازها را در بر مي گيرد و در پايان با توجه به ساخت جداسازهاي مختلف در كارخانه هاي متعددي كه موجود مي باشد، اين روش به انتخاب يكي از اين جداسازها منجر مي شود و در آنجا با توجه به مسائل مختلفي همچون، سرمايه گذاري اوليه، فضاي اختصاصي و غيره مي توان، نوع افقي، عمودي و يا كروي شكل آن را از كاتالوگ هاي موجود انتخاب نمود.

جداسازهاي الكترواستاتيكي فيلتري

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

يكي از انواع روش هاي جداسازي، روش فيلتر الكترواستاتيكي مي باشد. نشست ذرات مايع و جامد در سيستم پراكندگي در ميدان الكتريكي، اجازه تصفيه موثر گاز از ذرات خيلي كوچك را مي دهد. اساس اين روش، يونيزاسيون گاز توسط بارهاي الكتريكي مي باشد.

اگر گاز داراي بارهاي آزاد (الكترون ها و يون ها) از بين دو الكترود كه ايجاد ميدان الكتريكي متوالي مي كنند عبور داده شوند، بارهاي آزاد در مدارهاي ميدان به حركت در مي آيند.كه سرعت حركت و سينتيك انرژي آن را شدت ميدان آن تعيين مي كند. در هنگام افزايش اختلاف پتانسيل تا ده ها كيلوولت، سينتيك انرژي الكترون ها و يون هاي آزاد، براي برخورد با مولكول هاي گاز خنثي نيز كافي مي باشند. آنها را به يونها و الكترون هاي آزاد تبديل مي كنند. اين ذرات باردار تازه متولد شده نيز ، گازهاي ديگر را باردار مي كنند.

یونیزاسیون ضربه ای:

در نتيجه تشكيل يون ها، تمام گاز به شكل بهمن گونه اي يونيزه مي شوند. يونيزاسيون گاز به اين روش را، “يونيزاسيون ضربه اي” مي گويند. در ادامه، افزايش شدت ميدان باعث بوجود آمدن توقف الكتريكي و يا اتصال كوتاه الكترودها مي شود.
براي جلوگيري از اين امر از 2 الكترود غير هم جنس استفاده مي كنند. به عنوان مثال، يك الكترود را به صورت سيم باريك، و الكترود ديگر را، يا به صورت لوله اي كه الكترود اول را احاطه كرده و يا به صورت صفحات الكتريكي نزديك الكترود اول مي سازند. اشكالي از اين الكترودها را مشاهده مي كنيد. 

روش کار:

در اين حالت، بيشترين شدت ميدان در اطراف سيم است و هر چه به طرف لوله نزديكتر شود از شدت آن
كاسته مي شود. شرايط براي توقف و يا اتصال كوتاه الكتريكي از بين مي رود. بين 2 الكترود، در شدت جرياني كه باعث يونيزه شدن تمام گاز شود، تاج الكتريكي بوجود مي آيد و تاجي نوراني در اطراف سيم بوجود مي آيد (اثر
كريليان 1949 م. – تمام اجسامي كه در يك ميدان شديد مغناطيسي و يا الكتريكي قرار مي گيرند از خود نور ساطع
مي كنند. هر چه جسم انرژي بيشتري داشته باشد، نور متصاعد شده از آن بيشتر است). بنابراين اين الكترودها را تاجدارشده و الكترودهاي مقابل (لوله و يا صفحه) را رسوب گير مي نامند.

صفحات رسوب گير را به قطب مثبت و سيم هاي تاجدار را به قطب منفي جريان الكتريكي متصل مي كنند.
بدين صورت استفاده از شدت ميدان شديدتر را بدون هيچ مشكلي مهيا مي كنند.

يون هاي مثبت كه در اطراف تاج بوجود آمده اند به طرف الكترود تاجدار حركت كرده و در برخورد با آن از
بار الكتريكي خالي مي شوند. يون هاي منفي و يون هاي آزاد از طرف الكترود تاجدار حركت كرده، در مسير حركت خود با ذرات جامد و مايع برخورد نموده و آنها را نيز هم بار خود كرده و به طرف صفحات رسوب گيرميبرد.درنتيجه ذرات پراكنده در رسوب گير نشست مي كنند. البته مقدار خيلي كمي از ذرات پراكندگي كه با يون هاي مثبت در ناحيه تاج (در ناحيه اي كمتر از فضاي بين الكتروني) برخورد مي كنند، در سيم هاي تاجدار رسوب مي كنند. 

توان مورد نیاز:

توان تصفيه گاز در اين فيلترهاي الكتريكي، بيشتر به خواص رسانايي و چسبندگي (پيوستگي) ذرات غبار
بستگي دارد. هر چه ذرات جامد، هادي الكتريكي خوب و نيروي پيوستگي كم باشند، به الكترود برخورد كرده و بارخود را تخليه مي كنند و دوباره وارد جريان شده و توان تصفيه را كم مي كنند. بر عكس، اگر ذرات داراي رسانايي بد ونيروي پيوستگي بالايي باشند، در اين صورت در اطراف الكترود، لايه ضخيمي از ذرات با بار منفي چسبيده و ضد ميدان الكتريكي عمل مي كنند. در لايه هاي ضخيم، شدت جريان در روزنه هاي آن مي تواند تا حد بحراني برسد و باعث بوجود آمدن تاج در صفحات رسوب گير شود (تاج معكوس). اين پديده نيز باعث افت توان تصفيه مي شود. براي جلوگيري از اين پديده بايد اين صفحات مرتبا از رسوب پاك شوند.

الكتروفيلترهاي صفحه اي فشرده تر (جمع و جور تر) از نوع لوله اي آن مي باشد و جداسازي ذرات غبار در
آنها بهتر صورت مي گيرد. الكتروفيلترهاي لوله اي، توان ايجاد شدت جريان بيشتري را دارند.در نتيجه در آنها مقدار بيشتري گاز را مي توان تصفيه كرد. بعلاوه سيستم هاي پراكندگي پايدارتر و همچنين مه مانند را بهتر تصفيه مي كنند.
در شرايط عادي توان تصفيه الكتروفيلترها، به عواملي مثل: خواص گاز (تركيبات شيميايي، دما، رطوبت)،
خواص ذرات جامد غبار (خواص الكتريكي، شيميايي و پراكندگي)، غلظت غبارها، سرعت گاز و غيره بستگي دارد. درحقيقت اين پديده ها به قدري زيادند كه با روش هاي تئوري نمي توان توان تصفيه را بدست آورد و فقط از راه هاي تجربي حاصل مي شوند.

آماده سازي گاز جهت فرآوري

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

گاز طبيعي هنگام خروج از چاه، داراي قطرات مايع (ميعانات و آب) و ذرات كوچك شن و ماسه است. در
حقيقت گاز سيستم پراكندگي محسوب مي شود با فاز پراگندگي مايع و جامد.
منظور از آماده سازي گاز در پالايش، جداسازي فازهاي پراكندگي با استفاده از جداسازهاي مختلف مي باشد.
ويژگي اين مرحله در تغيير اندازه قطره رطوبتي و ذرات جامد (حالت پراكندگي) در جريان و ادامه مسير در
جداسازي مي باشد. چنانچه در محدوده ورودي، اندازه قطره در جريان، از 100 تا 1000 ميكرون (ميانگين معمولي آن از 700 الي 800 ميكرون) نوسان دارد و ممكن است كه ايجاد فيلم مايع كند. بعد از اولين مرحله جداسازي بايد فقط مايعاتي با قطر 30 الي 150 ميكرون باقي بمانند و پس از پايان دومين مرحله در گاز قطراتي با قطر 1 تا30-50میکرون وجود دارند. كه اين اندازه بستگي به نوع جداساز دارد.

هنگام خروج گاز از مرحله آماده سازي اوليه، مجموع مقدار فاز پراكندگي مايع نبايد از 350 ميلي گرم در مترمكعب گاز بيشتر باشد.

مطابق درخواست ميزان تصفيه و تركيب پراكندگي گاز، از دستگاه هاي جداساز با اثر (افكت) و تركيب وساختمان مختلف استفاده مي كنند. جداسازها طبق نحوه عملكردشان به گرانشي، لختي (اينرسيايي) يا پرشده، گريز مركز و فيلتري تقسيم مي شوند. در بيشتر مواقع براي اثر بهتر در ساختمان جداساز چند نوع از آنها را به هم متصل و يا ادغام مي كنند.

جداسازهاي گرانشي:

جداسازهاي گرانشي داراي انواع افقي، عمودي و كروي مي باشند.بخش مشترك آنهاوجود قسمت (يا مخزن) ته نشيني است كه در آن جداسازي ذرات پراكندگي تحت تاثير نيروي جاذبه و سرعت ته نشيني ذرات جامد در گاز 
 صورت مي گيرد. 

 جداسازهاي اينرسيايي:

از نظر ساختاري داراي انواع مختلف مي باشد اما بيشترين استفاده از 2 نوع پرشده و كركره اي مي شود. اساسكار آن بر پايه برخورد غير منتظره گاز با جسم سخت و چرخش ناگهاني و متعدد مي باشد. سطح محسوس تماس دراين جداسازها، از 10 الي 500 متر مربع در متر مكعب متغير است.
در نمونه پرشده از اجزايي مثل حلقه راشيگ، و سوزني استفاده مي شود. درصد رطوبت گيري اين جداسازها به
%99 هم مي رسد. در نمونه هاي كركره اي از پكيج هايي با صفحات موج دار فولادي كه به صورت افقي با قدم كوتاه نسبت به هم قرار گرفته اند، استفاده مي شود. اين كركره ها قادر به تله انداختن قطرات بزرگ تر از 20 ميكرون و قادر به تصفيه 6 ميليون متر مكعب گاز در شبانه روز مي باشد.

يكي از ويژگي هاي اين جداسازها ايجاد فيلم از مواد جامد و مايع در مقابل جريان گاز مي باشد. در سرعت
جريان بخصوصي، مي تواند لحظه اي ايجاد شود كه سرعت گاز به خاطر نيروي اصطحكاك جلوي جريان اين فيلم را بگيرد. بدين ترتيب در حركت مايع و كار دستگاه لحظه اي ايجاد مي شود كه اصطلاحا به آن غرق شدن مي گويند.

 سرعتي از گاز كه چنين پديده اي ايجاد مي شود را “سرعت بحراني” مي نامند .

جداسازهای غربالی:

جداسازهاي غربالي هم از نظر ساختماني مشابه كركره اي مي باشند با اين تفاوت كه به جاي كركره از يك سري پكيج توري دار با ضخامت 150 ميلي متر استفاده مي كنند. در اين پكيج هاي قطره گير، قطراتي از 5 الي 10ميكرون و بزرگ تر از آن جمع آوري مي شوند. بنابراين تاثير آن بهتر از نمونه كركره اي مي باشد و سرعت بحراني در 2 برابر بيشتر است. معمولا اين جداساز ها را در آخرين مرحله تصفيه استفاده كرده و در ساختار جداسازها /0 – 1/ آن 5 در انتهاي دستگاه (از نظر جريان خروجي) قرار مي دهند.