علت سفید شدن مو در سن جوانی

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

بسياری از بيماریها نيز مي‌تواند روند سفيد شدن موها را تسريع كند. كمبود ويتامين‌هاي B ،

بخصوص اسيدپانتوتنيك و ويتامين 12 B يكی از موی سفید اين موارد است.

علت سفیدی مو:

طبیعی است که با افزایش سن، رنگ مو تغییر کند.

اما موهای سفید تقریباً در هر زمان از زندگی ممکن است ظاهر شوند.

حتی نوجوانان و افراد در 20 سالگی ممکن است متوجه رشته موهای سفید شوند.

بدن انسان میلیون ها فولیکول مو یا کیسه های کوچکی دارد که پوست آن را می پوشاند.

فولیکولها مو و رنگ یا سلولهای رنگی حاوی ملانین تولید می کنند.

با گذشت زمان، فولیکول های مو سلول های رنگدانه را از دست می دهند

و در نتیجه رنگ موی سفید ایجاد می شود.

در این مقاله ، برخی از دلایل سفید شدن مو در نوجوانی و جوانی را آماده کرده ایم:

کمبود ویتامین می تواند باعث سفیدی زودرس مو شود.

سیگار کشیدن مدت طولانی است که با سفید شدن مو مرتبط است.

جلوگیری از سفید شدن مو بستگی به علت آن دارد.

علاوه بر سن ، علل بسیاری نیز وجود دارد که منجر به سفید شدن موهای فرد می شود.

کمبود ویتامین:

موهای سفید و خاکستری ممکن است در هر سنی شروع به رشد کنند و

ممکن است در اثر عوامل مختلفی ایجاد شود.

هرگونه نقص ویتامین B-6 ، B-12 ،بیوتین ، ویتامین D یا ویتامین E می تواند

 علت سفید شدن مو زودرس باشد.

کمبودهای غذایی روی رنگدانه تأثیر می گذارد ،

و این نشان می دهد که با مکمل ویتامین می توان باعث بازگشت رنگ مو شد.

ژنتیک :

براساس گزارشی، سفید شدن زودرس مو تا حد زیادی به ژنتیک مرتبط است.

نژاد و قومیت نیز تاثیر دارد. براساس همان مطالعه، سفید شدن زودرس مو 

در افراد سفید پوست می تواند از 20 سالگی، در بین آسیایی ها 25 سالگی و

در آفریقایی-آمریکایی ها در 30 سالگی شروع شود.

استرس اکسیداتیو :

در حالی که سفید شدن موی سر بیشتر ژنتیکی است ،

ممکن است استرس اکسیداتیو در بدن نقش داشته باشد که فرآیند زودرس اتفاق بیفتد.

استرس اکسیداتیو باعث عدم تعادل می شود

وقتی آنتی اکسیدان ها برای خنثی کردن اثرات مضر رادیکال های آزاد کافی نباشند.

رادیکال های آزاد مولکول های ناپایدار هستند که به سلول ها آسیب می رسانند

و در پیری و بیماری نقش دارند.

استرس اکسیداتیو می تواند باعث پیشرفت بیماری ها از جمله ویتیلیگو شود.

ویتیلیگو همچنین ممکن است به دلیل مرگ سلولی ملانین یا

از بین رفتن عملکرد سلول، موها را سفید کند.

۱۰ دلیل سفید شدن موها

1- ژنتیک

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی
متخصصان می‌گویند ژن‌ها عامل اصلی تعیین‌کننده‌ی این هستند که موهایتان

در چه سنی رنگدانه از دست بدهند.

برای برخی افراد، این اتفاق حتی ممکن است قبل از 20 سالگی بیفتد و برای برخی دیگر،

اولین تارهای سفید نسبتاً دیر مشاهده می‌شوند.

هر چه پدر و مادر و پدربزرگ و مادربزرگتان زودتر موهایشان سفید شده باشد،

احتمال این که موهای شما هم زود سفید شوند، بیشتر است.


2- کمبود ملانین


در بیشتر موارد، کمبود ملانین عامل اصلی سفید شدن موهاست.

تولید ملانین به تغذیه مناسب و دریافت پروتئین کافی بستگی دارد.

کمبود این مواد مغذی باعث می‌شود میزانِ ملانین، از حد قابل قبول پایین‌تر بیاید.


3- عدم تعادل هورمون‌ها


هورمون‌های شما تأثیر زیادی بر روی رنگدانه‌ی موهایتان دارند.

عدم تعادل آن‌ها می‌تواند باعث سفید شدن زودهنگام موها شود.


4- برخی شرایط پزشکی


برخی شرایط اساسی پزشکی می‌توانند باعث از بین رفتن رنگدانه در موهایتان شوند.

آن‌ها عبارت‌اند از: کمبود ویتامین B12 یا مشکلات غده تیروئید و هیپوفیز.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

5- استرس


استرس ناشی از برنامه‌های سرسام‌آور و مشغله‌های زیاد کاری،

یکی دیگر از دلایل مهم خاکستری شدن زودهنگام موهاست؛

چه به‌ تنهایی و چه به دلیل افزایش دیگر عادات نادرست مثل مصرف بیشتر فست فودها و…

در این شرایط.

6- مواد شیمیایی


بعضی اوقات، استفاده از محصولات شیمیایی مانند شامپوها، صابون‌ها، رنگ موها

و غیره ممکن است

به طور مستقیم باعث این مشکل شود و یا می‌تواند

با ایجاد عفونت یا آلرژی به طور غیرمستقیم موجب خاکستری شدن زودرس موها شود.
پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی


7- عوامل خارجی


تغییر در رنگ موی شما می‌تواند به دلیل عوامل خارجی

مانند آب و هوا، آلودگی و قرار گرفتن در معرض برخی مواد شیمیایی رخ دهد.

این عوامل روند پیری را تسریع می‌کنند.


اخیراً در مورد فقدان رنگدانه در مو یک موفقیت اساسی حاصل شده است؛

به طوری که مشخص شد فولیکول‌های مو مقدار کمی پراکسید هیدروژن آزاد می‌کنند

که با گذشت زمان انباشته می‌شوند و با رنگ‌زدایی از موها باعث خاکستری شدن

و در نهایت سفید شدن آن‌ها می‌شوند.

با از بین بردن این تجمع، این امکان وجود دارد که موهای شما رنگ طبیعی

خود را دوباره به دست بیاورند.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی
8- چاقی


در مطالعه‌ای که در سال 2015 در مجله

 the American Academy of Dermatology منتشر شد،

دانشمندان مشاهده کردند افراد چاق ممکن است با افزایش خطر ابتلا

به خاکستری شدن زودرس موها مواجه شوند.

بدین منظور بهتر است وزنتان را در محدوده‌ی طبیعی نگه دارید.


9- کمبود ویتامین D


همان‌طور که ذکر شد برخی کمبودهای غذایی می‌توانند

موجب خاکستری شدن موها شوند؛ یکی از آن‌ها کمبود ویتامین د است.

یک مطالعه منتشرشده در مجله بین‌المللی Trichology نشان داد

کودکانی که دچار موهای خاکستری زودرس

بودند، در مقایسه با گروه کنترل، به میزان قابل توجهی دچار

کمبود یا مقدار ناکافی از ویتامین د بودند.



10- بیماری خودایمنی آلوپسی آره آتا


بیماری پوستی خود ایمنی آلوپسی آره‌اتامی‌تواند منجر به سفید شدن تارهای مو شود.

طبق توضیحات بنیاد ملی آلوپسی آره‌آتا، مبتلایان به این بیماری ممکن است

موهای سر یا بدنشان را کاملاً از دست بدهند.

این اتفاق به این دلیل می‌افتد که سیستم ایمنی بدن به فولیکول‌های مو حمله می‌کند

و باعث ریزش موها می‌شود و وقتی موی جدید رشد کرد، سفید می‌شود.

در اینجا لیستی از غذاهایی وجود دارد که به شما کمک می‌کند موهایتان رنگدانه دار شود:

  1. – انواع توت:این میوه‌های ریز سرشار از ویتامین C هستند.
  2. – جگر:با کم‌خونی و کمبود آهن مبارزه می‌کند.
  3. – هویج:سرشار از ویتامین A است.
  4. – برگ‌های کاری:سرشار از ویتامین‌ها و مواد معدنی مانند سلنیوم، ید، روی و آهن است.
  5. – اسفناج:در تولید ملانین کمک می‌کند.
  6. – تخم مرغ:سرشار از ویتامین B12 است.
  7. – لوبیا:منبع غنی پروتئین است.
  8. – تخمه آفتابگردان:سرشار از آنتی‌اکسیدان‌ها و مواد معدنی است.
  9. – گردو:منبع غنی از مساست که به تولید ملانین کمک می‌کند.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

مومنتوم زاویه ای

مومنتوم زاویه ای

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مکانیک

معادله مومنتوم زاویه‌ای

در بسیاری از مسائل مهندسی، «گشتاور» (Torque) حول یک محور، مفهوم بسیار مهمی است که با استفاده از رابطه <span id="MathJax-Element-1-Frame" class="mjx-chtml MathJax_CHTML" style="font-family: IRANSans !important;font-size: 17px !important;line-height: 0;text-indent: 0px;text-align: center;text-transform: none;font-style: normal;font-weight: normal;letter-spacing: normal;float: none;direction: ltr;max-width: none;max-height: none;min-width: 0px;min-height: 0px;border: 0px;margin: 0px;padding: 1px 0px" role="presentation" data-mathml="T=r→×F→">T=r→×F→ محاسبه می‌شود. در این رابطه <span id="MathJax-Element-2-Frame" class="mjx-chtml MathJax_CHTML" style="font-family: IRANSans !important;font-size: 17px !important;line-height: 0;text-indent: 0px;text-align: center;text-transform: none;font-style: normal;font-weight: normal;letter-spacing: normal;float: none;direction: ltr;max-width: none;max-height: none;min-width: 0px;min-height: 0px;border: 0px;margin: 0px;padding: 1px 0px" role="presentation" data-mathml="r→">r→ بردار فاصله نیرو تا محور و <span id="MathJax-Element-3-Frame" class="mjx-chtml MathJax_CHTML" style="font-family: IRANSans !important;font-size: 17px !important;line-height: 0;text-indent: 0px;text-align: center;text-transform: none;font-style: normal;font-weight: normal;letter-spacing: normal;float: none;direction: ltr;max-width: none;max-height: none;min-width: 0px;min-height: 0px;border: 0px;margin: 0px;padding: 1px 0px" role="presentation" data-mathml="F→">F→ بردار نیرو را نشان می‌دهند. در مطلب «مومنتوم خطی در سیالات» برای محاسبه معادله مومنتوم خطی از قانون دوم نیوتن استفاده کردیم و به روابط قابل استفاده برای مسائل مکانیک سیالات دست یافتیم.
در این مطلب، هدف تعیین معادله مومنتوم زاویه‌ای است. این معادله را می‌توان با ضرب طرفین معادله مومنتوم خطی در فاصله نیرو از محور دوران محاسبه کرد. بنابراین برای شروع،‌ قانون دوم نیوتن برای یک ذره سیال را به فرم زیر می‌نویسم:
قانون دوم نیوتن
در این رابطه، V سرعت ذره سیال است که در یک سیستم مختصات لَخت محاسبه می‌شود. عبارت سمت راست رابطه بالا، نیروی خارجی که بر این ذره وارد می‌شود را نشان می‌دهد. در ادامه و برای محاسبه مومنتوم زاویه‌ای، گشتاور دو سمت رابطه فوق را نسبت به محور با فاصله r از آن، محاسبه می‌کنیم. برای این منظور، معادله بالا را به صورت ضرب خارجی r در دو طرف رابطه و به شکل زیر بازنویسی می‌کنیم.
مومنتوم زاویه‌ای
رای ساده‌سازی رابطه بالا نیاز به استفاده از روابط ریاضی و مفهوم ضرب خارجی داریم. یکی از ویژگی‌های ضرب خارجی در ریاضیات، در رابطه زیر نشان داده شده است.
رابطه انتقال رینولدز
برای ساده‌سازی رابطه بالا از این نکته استفاده می‌کنیم که حاصل مشتق مادی r برابر با V می‌شود. بنابراین عبارت اول سمت راست رابطه فوق به صورت حاصل ضرب خارجی عبارت V در خودش در می‌آید که می‌توان آن را به فرم زیر نمایش داد.
مومنتوم زاویه‌ای
بنابراین در صورتی که روابط 3، 4 و 5 در رابطه 2 قرار داده شوند، معادله مومنتوم زاویه‌ای به فرم زیر بازنویسی می‌شود.
مومنتوم زاویه‌ای

رابطه فوق برای تمام ذراتی که در یک سیستم حضور دارند، صادق است. بنابراین این رابطه را می‌توان برای کل سیستم بازنویسی کرد. برای این منظور باید مومنتوم زاویه‌ای سیستم، به صورت مجموع مومنتوم زاویه‌ای تک تک ذرات تشکیل دهنده آن سیستم نوشته شود که این کار با استفاده از رابطه انتگرالی زیر انجام می‌شود.
مومنتوم زاویه‌ای
در مکانیک سیالات با توجه به تعاریف سیستم و مشتق مادی، روابط زیر برای ذرات یک سیستم و مشتق مادی آن سیستم برقرار هستند.

مومنتوم زاویه‌ای
سمت چپ این معادله، نرخ زمانی تغییرات مومنتوم زاویه‌ای سیستم را نمایش می‌دهد و عبارت سمت راست این معادله نشان‌دهنده مجموع گشتاور نیروهای خارجی است که به سیستم وارد می‌شود. نکته مهم دیگر این است که، گشتاور وارد بر یک حجم کنترل که به سیستم چسبیده است با گشتاور وارد بر آن سیستم برابر است.
کاربرد معادله مومنتوم زاویه‌ای در حل مسائل
معادله مومنتوم زاویه‌ای که در این بخش به بررسی آن پرداخته شد، در حل مسائل مربوط به ماشین‌های چرخان مانند توربوماشین‌ها، پره‌های توربین و کمپرسور و آب‌پاش‌های چمن به صورت رایج مورد استفاده قرار می‌گیرد. در هرکدام از مسائل با توجه به شرایط خاص آن مسئله، معادله مومنتوم زاویه‌ای به شکل‌های مختلف اصلاح می‌شود.
در برخی از مسائل برای ساده‌سازی حل، جریان به صورت یک بعدی در نظر گرفته می‌شود. در این حالت توزیع یکنواختی از سرعت متوسط در هر بخش جریان موجود است و ضرب خارجی موجود در رابطه مومنتوم زاویه‌ای به صورت ساده قابل محاسبه است.
در گروهی دیگر از مسائل مکانیک سیالات برای ساده‌سازی معادله مومنتوم زاویه‌ای، جریان به صورت پایا در نظر گرفته می‌شود. در این حالت عبارت اول سمت چپ معادله مومنتوم زاویه‌ای به شکل زیر نوشته می‌شود و برابر با صفر است.

تونل باد

تونل باد

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مکانیک

تونل باد را می‌توان به عنوان یک محفظه بسیار بزرگ معرفی کرد که جریان هوا در آن با سرعت مشخصی در حال حرکت است. یکی از کاربردهای تونل باد، شبیه‌سازی وضعیت پرواز است. در این حالت، محققین از تونل باد برای فهم دقیق شیوه پرواز هواپیما، استفاده می‌کنند. برای مثال شرکت «ناسا» (NASA) با انجام آزمایش روی مدل‌های کوچک هواپیما و فضاپیما در تونل‌های باد، به پیشرفت علم هوافضا و آیرودینامیک کمک بسیار زیادی کرده است.
برخی از تونل‌های باد، به اندازه کافی بزرگ هستند و به کمک آن‌ها می‌توان اجسام با اندازه واقعی را مورد آزمایش قرار داد. تونل باد، جریان هوا را از اطراف جسمی مانند هواپیما عبور می‌دهد و در این حالت، تصور می‌شود که این جسم به صورت واقعی در حال پرواز است. در واقع در حالت واقعی، جسم در هوا حرکت می‌کند و در تونل باد، هوا روی جسم در حال حرکت است. در هر دو حالت ذکر شده، سرعت نسبی جسم و هوا نسبت به یکدیگر یکسان هستند.
در مکانیک سیالات دو راه برای محاسبه پارامترهای مختلف میدان جریان سیال مانند سرعت و فشار موجود است. راه اول حل عددی معادلات ناویر استوکس و پیوستگی در علم دینامیک سیالات محاسباتی است که این حل‌های عددی با استفاده از روش‌های مختلف مانند روش تفاضل محدود، روش حجم محدود و المان محدود انجام می‌شوند. راه دوم نیز انجام آزمایشات تجربی در تونل‌های باد و یا محیط‌های آزمایشگاهی دیگر است.
تونل باد چگونه کار می‌کند؟
اکثر مواقع، فن‌های قدرتمندی باعث جریان یافتن هوا در تونل باد می‌شوند. فن، یک توربوماشین است که سیال کاری آن، هوا در نظر گرفته می‌شود. جسم مورد آزمایش در تونل باد، در یک نقطه ثابت شده و قابلیت حرکت ندارد. این جسم می‌تواند یک مدل کوچک از ماشین و یا یک قسمت جزئی آن و یا حتی یک هواپیما و فضاپیما، با اندازه واقعی باشد. جسم قرار گرفته در تونل باد را می‌توان یک مدل رایج واقعی مانند توپ تنیس نیز در نظر گرفت. در این حالت، هوای عبوری از اطراف جسم ساکن در تونل باد، نماینده خوبی برای بیان حالتی است که جسم در دنیای واقعی، درون هوا حرکت می‌کند.
برای نشان دادن شیوه تغییراتی که روی هوا اطراف جسم صورت می‌گیرد، از «دود» (Smoke) استفاده می‌شود. دود همراه جریان اطراف جسم حرکت می‌کند و شیوه تغییرات جریان را نمایش می‌دهد. این مورد در شکل زیر نشان داده شده است. گردابه‌ها و جریان دنباله‌ای پشت این توپ تنیس به وضوح در این شکل قابل رویت هستند.
در واقع به صورت کلی می‌توان بیان کرد که تونل باد، ابزاری است که از آن برای مطالعه برخورد هوا با یک جسم استفاده می‌شود. همانطور که بیان شد، مدل در مقطع تست تونل باد به صورت ساکن قرار داده شده است، بنابراین نیروی لیفت و درگ وارد بر آن را می‌توان به راحتی با محاسبه میزان نیروی کششی در راستاهای مختلف آن مقطع ثابت، اندازه‌گیری کرد.
برای اندازه‌گیری خطوط جریان و «آشفتگی» (Turbulence) موجود در سطح، می‌توان از روغن‌های رنگی و یا خاک رس استفاده کرد. همچنین خطوط جریان در نقاط کمی دورتر از سطح را می‌توان با استفاده از تزریق دود نمایش داد. تونل‌های باد پیشرفته با استفاده از «اثر داپلر» (Doppler Effect) و یا دوربین‌هایی با سرعت ضبط تصویر بالا، جریان هوا اطراف جسم را به نمایش می‌گذارند. شکل زیر روش «سرعت سنجی تصویری ذرات» (Particle Image Velocimetry) را به تصویر کشیده است. این روش به صورت خلاصه با نماد PIV نمایش داده می‌شود.
در روش PIV، قسمتی از جریان عبوری از روی جسم با لیزر روشن و در فواصل زمانی کوتاه به کمک دوربین سریع تصویر برداری می‌شود. در نهایت، تحلیل این تصاویر با استفاده از نرم‌افزارهای پردازش تصویر صورت می‌پذیرد و با استفاده از این تحلیل‌ها، میدان جریان اطراف جسم محاسبه می‌شود. در واقع به صورت خلاصه در این روش، ابتدا باید با استفاده از پردازش تصویر، میزان جابه‌جایی تک تک ذرات در یک فاصله زمانی مشخص را محاسبه کرد و بعد از آن با اندازه‌گیری حاصل تقسیم جابه‌جایی ذرات بر فاصله زمانی، سرعت هرکدام از ذرات را به دست آورد.
تونل‌های باد را می‌توان بر اساس شکل ظاهری به دو دسته کلی «تونل‌های باد مدار بسته» (Closed-Circuit Wind Tunnels) و یا «مدار باز» (Open-Circuit) تقسیم‌بندی کرد. همچنین بر اساس سرعت هوا، تونل باد به چهار دسته «زیر صوت» (Subsonic)، «نزدیک صوت» (Transonic)، «صوت» (Sonic)، «بالای صوت» (Supersonic) و «مافوق صوت» (Hypersonic) تقسیم می‌شوند.
همانطور که در مطالب قبلی وبلاگ فرادرس اشاره شد، عدد ماخ به صورت نسبت سرعت سیال به سرعت صوت در آن دما تعریف می‌شود. این موضوع را می‌توان با استفاده از رابطه زیر بیان کرد.

در این رابطه، u سرعت سیال و c سرعت صوت را نشان می‌دهند. در صورتی که عدد ماخ کمتر از 0.8 باشد، جریان به صورت زیر صوت است. اگر عدد ماخ در محدوده 0.8 تا 1.2 قرار بگیرد، جریان حاصل جریان نزدیک صوت نامیده می‌شود. در صورتی که عدد ماخ بین 1.2 تا ۵ قرار بگیرد جریان را بالای صوت می‌نامند و جریان با عدد ماخ در محدوده ۵ تا ۱۰ مافوق صوت نامیده می‌شود.
یکی دیگر از انواع دسته‌بندی‌های تونل‌های باد، دسته‌بندی بر اساس فشار هوا است. در این حالت، تونل‌های باد شامل دو دسته «اتمسفری» (Atmospheric) و «چگالی متغیر» (Variable- Density) هستند.
هوای تونل باد در سرعت‌های کمتر از سرعت صوت با استفاده از فن‌های بزرگ تولید می‌شود. در سرعت بالاتر از سرعت صوت، از دو روش می‌توان برای ایجاد جریان هوا استفاده کرد. روش اول، تزریق جریان هوای فشرده از یک مخزن هوای فشرده در بالادست تونل باد است و در روش دوم از یک «تانک خلا» (Vacuum Tank) که در انتهای تونل باد قرار داده شده، استفاده می‌شود. در برخی از موارد نیز برای تولید یک سرعت مافوق صوت (سرعت جریان هوا در این حالت حداقل پنج برابر سرعت صوت است) از ترکیب این دو روش استفاده می‌شود.

اجزای اصلی تونل باد، شامل «مخروط ورودی» (Entrance Cone)، مقطع تست (Test Section)، «ناحیه عبور» (Regain Passage)، «موتور یا ملخ» (Propeller or Motor) و «ناحیه بازگشت» (Return Passage) است. «مستقیم‌کننده‌های جریان» (Flow Straighteners)، «پره‌های زاویه‌دار» (Corner Vanes)، «ردیف‌های هانی کامب» (Honeycomb Layers) که برای کاهش آشفتگی جریان استفاده می‌شوند، «مبدل‌های حرارتی هوا» (Air Heat Exchangers) و «دیفیوزرها» (Diffusers) نیز اجزای دیگری هستند که در تونل‌های باد مشاهده می‌شوند.
فشار سطح جسم در تونل‌های باد با استفاده از ایجاد حفره‌های کوچک روی سطح جسم و یا با استفاده از «لوله پیتوت» (Pitot Tubes) قابل اندازه‌گیری است. نیروهایی که به مدل وارد می‌شود را می‌توان با استفاده از اندازه‌گیری پارامترهای مختلف جریان در بالادست و پایین دست مدل، محاسبه کرد. با استفاده از لوله پیتوت می‌توان علاوه بر اندازه‌گیری فشار، سرعت جریان در بالا دست را نیز به شکل زیر به دست آورد.
تونل‌ باد و ورزش
امروزه تونل‌های باد در ورزش‌های گوناگونی مورد استفاده قرار می‌گیرد که در آن‌ها سرعت ورزشکار، پارامتر بسیار مهم برای برنده شدن است. مسابقات موتورسواری، اتومبیل‌رانی، دوچرخه سواری، اسکی و قایقرانی، فقط بخشی از مثال‌هایی هستند که در آن‌ها از تونل باد برای کاهش تنها چند میلی ثانیه زمان استفاده می‌شود. در واقع شبیه‌سازی مسابقه و پرواز با استفاده از تونل باد و در نهایت اصلاح طراحی و ساخت، بسیار راحت‌تر از زمانی است که تست در محیط بیرون و واقعی انجام می‌شود.
همانطور که می‌دانید اکثر اتومبیل‌ها نیروی لیفت تولید می‌کنند. در این حالت، با افزایش سرعت اتومبیل، نیروی لیفت آن نیز افزایش پیدا می‌کند و تحت این شرایط اتومبیل ناپایدار می‌شود. برای مقابله با این شرایط، بسیاری از اتومبیل‌ها طوری طراحی شدند که در هنگام حرکت، لیفت منفی تولید کنند.
خودروهای خانواده «سدان» (Sedan) ضریب لیفتی برابر با 0.3 دارند، این در حالی است که ضریب لیفت خودروهای فرمول یک در حدود 3.8 محاسبه شده است. تمامی این موارد را می‌توان در یک تونل باد مشاهده و اندازه‌گیری کرد و از نتایج آن برای طراحی بهتر استفاده کرد.
همانطور که می‌دانیم، ضریب لیفت و ضریب درگ، پارامترهای بی‌بعدی هستند که با استفاده از تحلیل ابعادی در مسائل مختلف محاسبه می‌شوند و می‌توان آن‌ها را به ترتیب با استفاده از روابط زیر اندازه‌گیری کرد.

ضریب لیفت

ضریب درگ

در این رابطه Fl و Fd به ترتیب نیروی لیفت و درگ را نشان می‌دهند. ρ چگالی سیال را بیان می‌کند و A مساحت سطحی از جسم است که نیروی لیفت و درگ را تجربه می‌کند. تعریف درست این مساحت در علوم مختلف متفاوت است و به عنوان یک قرار داد در علوم مختلف برای نمایش ضریب لیفت و درگ در نظر گرفته می‌شود.
تونل‌های باد چگونه به طراحی فضاپیماها کمک می‌کنند؟
ناسا فضاپیماها و راکت‌ها را نیز با استفاده از تونل‌های باد مورد آزمایش قرار می‌دهد. همانطور که می‌دانید فضاپیماها، ماشین‌هایی هستند که برای عمل در فضا طراحی شدند و در فضا هیچ اتمسفری وجود ندارد. این ماشین‌ها برای آن‌که به فضا برسند، باید از اتمسفر عبور کنند. علاوه بر این، تمامی ماشین‌هایی که انسان‌ها را به فضا می‌برند، برای بازگشت به زمین نیز باید از اتمسفر عبور کنند.
ناسا برای تست کردن میزان امنیت فضاپیماهایی که انسان‌ها و تجهیزات را به فضا می‌برند، فضاپیماها را درون تونل باد مورد آزمایش قرار می‌دهد. نکته دیگر این است که، آزمایش تونل باد روی این ابزار و تجهیزات برای اطمینان از صحت کامل آن‌ها هنگام ورود به زمین نیز صورت می‌گیرد.
علاوه بر موارد ذکر شده، تونل‌های باد به مهندسان کمک می‌کند تا فضاپیماهایی را با طراحی مناسب جهت کار کردن در سیاره‌های دیگر، تولید کنند. برای مثال، مریخ اتمسفر سبکی دارد و شیوه رفتار فضاپیما در این شرایط، نقش بسیار مهمی در طراحی آن‌ها بازی می‌کند. بنابراین همانطور که اشاره شد، طراحی مناسب یک فضاپیما امری بسیار مهم است و باید طراحی فضاپیما طوری صورت بگیرد که در شرایط مختلف جو و تغییرات آن، عملکرد مناسبی از خود نشان بدهد و رسیدن به این هدف، جز با انجام آزمایشات مختلف در تونل‌های باد امکان پذیر نخواهد بود. بنابراین فضاپیما و چتر نجات مورد استفاده فضانوردان برای شبیه‌سازی شرایط اتمسفر مریخ، در یک تونل باد مورد آزمایش قرار می‌گیرند. شکل زیر مدل یک شاتل که در تونل باد مورد آزمایش قرار گرفته است را به تصویر کشیده است.
ناسا انواع مختلفی از تونل‌های باد را برای انجام آزمایش‌های گوناگون مورد استفاده قرار می‌دهد. برخی از این تونل‌های باد، اندازه‌ای برابر با چند سانتی متر مربع دارند و برخی از آن‌ها به اندازه‌ای بزرگ هستند که یک هواپیما با اندازه واقعی در آن تست می‌شود. عده‌ای از این تونل‌های باد، هوایپماها را در سرعت‌های بسیار پایین مورد آزمایش قرار می‌دهند و عده‌ای دیگر هواپیماها را در سرعت‌های مافوق صوت، تست می‌کنند.
همانطور که بیان شد، تونل باد، ابزاری است که از آن برای مطالعه برخورد هوا با یک جسم استفاده می‌شود و حضور تونل‌های باد، به طراحی و ساخت دقیق ابزارها و ماشین‌های مختلف در علم آیرودینامیک کمک بسیار زیادی کرده است. همچنین حضور این تونل‌ها باعث پیشرفت در ورزش‌هایی شده که سرعت در آن‌ها اهمیت بسیار زیادی دارد.

 

بازار کار مهندسی شیمی

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

صنايع گاز
فارغ‌التحصيلان رشته مهندسي شيمي صنايع گاز پس از پايان تحصيلات مي‌توانند در پالايشگاههاي گاز كشور و يا در ديگر صنايع مربوط به اين رشته مشغول به كار شوند. در حال حاضر زمينه كار براي فارغ‌التحصيلان به دليل ملي بودن صنعت نفت و گاز، بيشتر در بخش دولتي است ولي برخي شركتهاي مشاوره‌اي و پيمانكاري كه در اين زمينه فعاليت مي‌كنند، فارغ‌التحصيلان اين رشته را جذب مي‌كنند. با توجه به نياز كشور به انرژي براي راه‌اندازي بخش صنعت و حمل و نقل و همچنين استفاده از گاز طبيعي به عنوان ماده اوليه در برخي از صنايع ، لازم است ميدانهاي گاز توسعه يابند و پالايشگاههاي جديد گاز نيز احداث شوند. بنابراين مهندسان شيمي متخصص در صنايع گاز مي‌توانند نقش مهمي را در پيشرفت كشور به عهده داشته باشند.

صنايع غذايي
فارغ‌التحصيلان اين دوره مي‌توانند در كارخانه‌هاي قند، روغنهاي نباتي، كنسروسازي ، لبنيات پاستوريزه، آماده‌سازي مواد گوشتي، صنايع نوشابه‌سازي، صنايع استخراج اسانس، چاي، سردخانه‌ها و واحدهاي نگهداري از مواد غذايي كار كنند.

طراحي فرآيندهاي صنايع نفت
فارغ‌التحصيلان رشته مهندسي شيمي طراحي فرآيندهاي صنايع نفت پس از پايان تحصيلات مي‌توانند در پالايشگاههاي نفت كشور و يا در ديگر صنايع مربوط به اين رشته مشغول به كار شوند . در حال حاضر زمينه كار براي فارغ‌التحصيلان به دليل ملي بودن صنايع نفت و گاز ، بيشتر در بخش دولتي است ولي برخي شركتهاي مشاوره‌اي و پيمانكاري كه در اين زمينه فعاليت مي‌كنند، فارغ‌التحصيلان اين رشته را جذب مي‌كنند.

پالايش
فارغ‌التحصيلان رشته مهندسي شيمي ? صنايع پالايش پس از پايان تحصيلات مي‌توانند در پالايشگاههاي كشور و يا در ديگر صنايع مربوط به اين رشته مشغول به كار شوند. در حال حاضر زمينه كار براي فارغ‌التحصيلان به دليل ملي بودن صنعت نفت و گاز، در بخش دولتي مهياست. برخي شركتهاي مشاوره‌اي و پيمانكاري نيز كه در اين زمينه فعاليت مي‌كنند، فارغ‌التحصيلان اين رشته را مي‌توانند جذب كنند.

صنايع پتروشيمي
فارغ‌التحصيلان رشته مهندسي شيمي ? صنايع پالايش پس از پايان تحصيلات مي‌توانند در پالايشگاههاي كشور و يا در ديگر صنايع مربوط به اين رشته مشغول به كار شوند. در حال حاضر زمينه كار براي فارغ‌التحصيلان به دليل ملي بودن صنعت نفت و گاز، در بخش دولتي فراهم است. برخي شركتهاي مشاوره‌اي و پيمانكاري نيز كه در اين زمينه فعاليت مي‌كنند، فارغ‌التحصيلان اين رشته را مي‌توانند جذب كنند.

وضعيت نياز كشور به اين رشته در حال حاضر
هر كارخانه توليدي اعم از كوچك يا بزرگ نياز به يك مهندس شيمي دارد. چرا كه تقريبا در تمام فرآيندهاي نوين از مواد شيميايي استفاده مي‌كنند و در حقيقت رشد شگرف صنعت در قرن گذشته تا حدود زيادي مديون مهندسي شيمي بوده است. به همين دليل در كشورهاي صنعتي اين رشته اهميت ويژه‌اي دارد. تا جايي كه ميزان توليد و مصرف اسيد سولفوريك يك كشور را ، شاخص گستردگي صنايع آن كشور مي‌دانند. چون اسيد سولفوريك در صنايع شيميايي كار برد بسياري دارد و مصرف آن در هر كشور نشانگر گستردگي صنايع شيميايي و در نهايت كل صنعت آن كشور است.

رشته مهندسي شيمي در كشور ما نيز يكي از رشته‌هاي مهم و پركاربرد مي‌باشد. چرا كه ما به عنوان يك كشور نفت‌خيز براي استخراج، پالايش ، انتقال نفت و همچنين براي تبديل نفت به فرآورده‌هاي شيميايي كه داراي ارزش افزوده بسيار زيادي هستند، نياز به تخصص مهندسين شيمي داريم.

فعاليت در دو بخش مهم صنعت تنها منحصر به مهندسين شيمي مي‌شود. يعني تنها يك مهندس شيمي مي‌تواند در يكي از اين دو بخش فعاليت داشته باشد كه اين دو بخش عبارتند از:

الف ) طراحي راكتورها ؛ به عبارت ديگر دستگاههايي كه در آنها واكنش‌هاي شيميايي اتفاق مي‌افتد. مثل راكتورهاي صنعت پتروشيمي كه در آنها از تركيب دو يا چند ماده ، ماده جديد به وجود مي‌آيد.

ب ) طراحي دستگاههايي كه به جداسازي مواد مي‌پردازند. براي مثال نفت خام، مخلوط پيچيده‌اي است كه از تركيب مواد بسياري تشكيل شده است و به همين دليل به صورت اوليه قابل استفاده نمي‌باشد. بلكه بايد تجزيه شده و از آن نفت سفيد، گازوئيل، بنزين، مازوت و … به دست بيايد. كار فوق توسط دستگاه تقطير انجام مي‌گيرد كه طراحي آن بر عهده مهندسين شيمي است. البته فرآيند جداسازي منحصر به تقطير نيست بلكه انواع و اقسام تحولات را داريم كه در آن تحولات، جداسازي مواد انجام مي‌گيرد مثل استخراج مايع از مايع ،‌دستگاه جذب سطحي ، ليچينگ و موارد متعدد ديگر.

به عبارت ديگر مهندس شيمي دستگاههايي را طراحي مي‌كند كه در آنها واكنش‌هاي شيميايي و يا فرآيند جداسازي انجام مي‌گيرد كه البته محصول هر يك از دستگاههاي فوق ارزش افزوده بسيار زيادي دارد.

صنايع شيميايي نه تنها باعث افزايش سرمايه و بهبود وضعيت اقتصادي يك كشور مي‌شود بلكه در ايجاد بازار كار نيز بسيار موثر است. براي مثال با ايجاد هر شغلي در صنعت پتروشيمي حدود بيست شغل در صنايع پايين‌دستي و وابسته به وجود مي‌آيد. در اين ميان مهندسين شيمي به عنوان گردانندگان اين صنايع نقش بسيار مهمي دارند. در واقع اگر در كشور ما سرمايه‌گذاري صنعتي زياد شود، جامعه به شدت نياز به مهندس شيمي دارد، چون علاوه بر صنايع نفت و گاز و پتروشيمي ، همه كارخانه‌ها از جمله كارخانه‌هاي سيمان، سراميك، صنايع غذايي و حتي نيروگاهها به مهندس شيمي نياز دارند.

انواع غلظت

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

دیدکلی

یک محلول را می‌توان به عنوان مخلوط همگنی از دو یا چند ماده تعریف کرد. درمحلول گاز – مایع یا جامد – مایع معمولا مایع ، حلال و جز دیگر ماده حل شونده می‌باشد. اما دریک مخلوط مایع – مایع انتخاب جز حلال و حل شونده دشوار است. مگر اینکه مقدار یکی بیشتر از دیگری باشد. وقتی در مورد محلولها بحث می‌شود. اولین چیزی که به ذهن می‌آید غلظت آنها می‌باشد. غلظت عبارت است از مقادیر نسبی اجزا موجود در یک محلول. مثلا محلولی که شامل مقدار کمی ماده حل شده باشد، محلول رقیق می‌باشد یا اگر مقدار ماده حل شده بیشتر شود، محلول غلیظ نامیده می‌شود. خواص محلولها به مقادیر نسبی ماده حل شده در حلال بستگی دارد. برای همین است که درکارهای کمی مربوط به محلولها ابتدا باید غلظتها را مشخص کرد.
‍‍‍‍‍!روشهای مختلف بیان غلظت

مولاریته

مولاریته یک محلول عبارت است از مقدار مولهای جسم حل شده در یک لیتر از محلول. این غلظت را به صورت میلی مول حل شده در میلی لیتر هم بیان می‌کنند و یکی از پر کاربردترین مفاهیم غلظت در شیمی تجزیه می‌باشد. این تعریف بر اساس حجم کل محلول استوار است. وقتی غلظت محلول بر حسب مولاریته بیان می‌شود، محاسبه مقدار ماده حل شده موجود در یک نمونه معین از محلول آسان است. تعداد مولهای جسم حل شده از تقسیم کردن وزن آن بر حسب gr به وزن فرمولی آن (وزن مولکولی ، وزن اتمی ، وزن یونی) بدست می‌آید.
وزن فرمولی/ وزن جسم حل شده =تعدادمولها g r / lit لیترمحلول/ مقدارمولهای ماده حل شده=M مولاریته !! نرمالیته: نرمالیته یک محلول برابراست با ارزگرمهای (اکی والان گرمهای) ماده حل شده دریک لیترازمحلول. وزن اکی والان شیمیایی یک ماده بستگی به واکنشی دارد که درآن شرکت کرده است. به عنوان مثال اگر اسیدسولفوریک در واکنش ختثی شدن شرکت کند، هم ارز شیمیایی آن نصف وزن مولکولی آن می باشد.
وزن اکی والان گرم یک ماده برحسب نوع واکنش تعیین می شود.
لیترمحلول/ شماراکی والان جسم حل شده = N نرمالیته
به عنوان مثال وزن اکی والان ماده ای که درواکنش خنثی شدن شرکت می کند عبارت از وزنی ازآن ماده است که درآن واکنش بایک وزن فرمول گرم یون هیدروژن ترکیب می شود.

. n/ M وزن نمونه = E اکی والان


n = تعداد هیدروژنهای اسید-تعداد OH باز-ظرفیت فلز درنمک-عدداکسیداسیون و …
برحسب نوع واکنش n تعیین می شود.

مولالیته: مولالیته یک محلول عبارت است از عددمولهای حل شده در g r 1000 حلال. مولالیته یک محلول آبی بسیار رقیق همان مولاریته آن محلول است زیرا g r 1000 آب تقریبا ml 1000 حجم اشغال می کند.

gr/ mol gr 1000 حلال / تعداد مولهای ماده حل شده = m مولالیته

درصد وزنی

درصد وزنی یک ماده حل شده دریک محلول عبارتست از:
گرمهای حلال+گرمهای جسم حل شده/ گرمهای جسم حل شده×100 = W% درصد وزنی
درصد وزنی معمولا برای بیان غلظت تجارتی محلولهای آبی در واکنشگرها به کار می رود و به عنوان مثال اسیدنیتریک به صورت محلول 70% به فروش می رسد که در100 گرم آن ، 70 گرم اسیدنیتریک وجود دارد.

درصد حجمی

عبارت است از لیترجسم حل شده برلیترمحلول ضربدرصد.

100×لیترمحلول/ لیتر جسم حل شده = V o l %

گرم برحجم

عبارت است از مقدارگرمهای جسم حل شده دریک لیترمحلول. لیترمحلول/ گرم جسم حل شده=C

درصد وزنی-حجمی

100×حجم محلول به میلی لیتر/ وزن ماده حل شده به گرم=درصدوزنی-حجمی ( V/ W )
این غلظت برای بیان ترکیب محلولهای آبی رقیق و واکنشگرهای جامد به کار می رود بنابراین یک محلول آبی 5% از نیترات نقره محلولی می باشد که ازحل کردن 5 گرم نیترات نقره درمقدارکافی آب مقطر برای تولید 100 میلی لیتر محلول استفاده شده است.

کسرمولی

کسرمولی یک جزء سازنده محلول ، نسبت عده مولهای آن جزء به تعدادکل مولهای تمام اجزاء موجود درمحلول می باشد.
کل مولهای اجزاء موجود درمحلول … n c+ nB+ nA / تعدادمولهای A nA= X_A کسرمولی جسم A

فرمالیته یا غلظت نرمال

فرمالیته عبارت است از مقدار وزن فرمولی ازیک ماده حل شده برحسب گرم دریک لیترمحلول.
لیترمحلول/ ( gFW )= فرمالیته( F)وزن مولکولی/ گرمهای نمونه حل شده = وزن فرمول گرمی ( g FW )

قسمت درمیلیون یا p pm

عبارت است از وزن جسم حل شده برحسب میلی گرم در یک لیتر از محلول.
لیترمحلول/ میلی گرم جسم حل شده = p pm
غلظت مولار و غلظت نرمال پرکاربردترین واحدهای غلظت در تهیه محلولها می باشند.

استابیلایزر و استابیلایزینگ

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

بخش ششم

واحد تثبيت در فازهاي 4و  5  پارس جنوبي:

در ادامه شرح مختصري بر واحد تثبيت ميعانات گازي ارائه مي گردد

همان طور كه گفته شد هدف از ايجاد اين واحد توليد ميعانات گازي تثبيت شده جهت ذخيره و صدور و همچنين باز گرداندن تركيبات سبك جدا شده از اين ميعانات به چرخه گاز پالايشگاه مي‌باشد. در فازهاي 4 و 5 پارس جنوبي دو واحد تثبيت ميعانات (هر دو واحد براي يك فاز) و همچنين يك واحد Back- up stabilization (واحد 0: 1كه معمولاً در سرويس نمي‌باشد) ايجاد شده است كه واحد 110 وظيفه پشتيباني واحدهاي 103 را به عهده دارد.

ميعانات توليد شده در واحد 103 پس از تركيب با  كه از واحدهاي 107 مي‌آيد، بايد به مشخصات زير باشد:

– RVP محصول نهايي در تابستان 10psia باشد.

– RVP محصول نهايي در زمستان 12 psia باشد.

2-3) شرح مختصر

مايعي كه از ذخاير ارسال مي‌شد در sluge catcher جدا شده و به واحدهاي تثبيت فرستاده مي‌شود. كار اين واحدها جداسازي تركيبات سبك در خوراك ورودي و ساختن مايعي است كه پس از تركيب با از واحد 107 داراي 10 psia (RPV) Reid Vapour Pressure در تابستان و 12psia در زمستان باشد. اين واحد داراي چهار قسمت اصلي مي‌باشد.

– قسمت Pye- flash و نمك گيري از خوراك ورودي

– قسمت تثبيت مايعات

– قسمت كمپرس كردن گاز جدا شده

– قسمت ارسال كننده ميعانات به مخزن

ميعانات ورودي پيش گرم شده قبل از ورود، نمك گير flash مي شوند سپس گازهاي سبك در سرج stabilizer جدا مي‌شوند گاز دي چدا شده (gas-off) كمپرس شده و به جدا كننده‌هاي تحت فشار در واحد 100 بازگردانده مي‌شوند. سپس ميعانات تثبيت شده سردشده با  تركيب مي‌شود و جهت ارسال ذخيره مي‌شود.

 

 

شرح كلي واحد:

خوراك واحد:

براي طراحي اين واحد سه حالت مختلف در نظر گرفته شده است: تابستان، زمستان و depacking. جداول زير تركيب و وضعيت خوراك واحد 103 را در هر حالت نشان مي‌دهد.

 

Summer Case

winter Case

Depacking Case Winter

H20

21.32

18.88

16.80

N2

0.26

0.28

0.47

C02

0.89

1.08

1.31

H2S

0.84

1.03

1.08

C1

20.21

23.32

32.41

C2

4.77

5.82

6.17

C3

4.16

5 07

4.51

C4

1.50

1.78

1.44

nC4

3.13

3.63

2.87

iC5

1.91

2.09

1.58

nC5

2.14

2.28

1.74

C6cut

4.13

4.03

3.18

C7cut

5.52

5.12

4.16

C8cut

6.52

5.85

4.91

C9cut

4.68

4.12

3.54

C10cut

3.42

2.97

2.60

C11cut

2.21

1.91

1.68

C12cut

1.52

1.32

1.17

C13cut

1.25

1.08

0.96

C14cut

0.83

0.72

0.64

C15cut

0.55

0.48

0.43

C16cut

0.42

0.36

0.32

C17cut

0.28

0.24

0.21

C18cut

0.28

0.24

0.21

C19cut

0.14

0.12

0.11

C20+

0.42

0 36

0.32

COS (ppm mol)

6

8

7

CH4S (ppm mol)

117

138

116

ETSH (ppm mol)

1492

1656

1314

PR1THIOL(ppm

1421

1386

1111

BU1THIOL (ppm

502

465

383

HX1THIOL (ppm

1130

989

858

MEG

6.23

5.38

4.79

Total (kmol/h)

3586.5

4154.9

4665.1

 

Depacking case Winter

Winter Case

Summer Case

Case

29.0 Barg

29.0 Barg

29.0 barg

Pressure

2.1 °C

6.1 °C

22.3 °C

Temperature

 

 

شرح واحد:

اين واحد را مي‌توان به چهار قسمت كلي تقسيم كرد كه در زير به شرح هركدام از اين قسمتها مي‌پردازيم:

 

قسمت Preflash و نمك گيري از خوراك ورودي:

ميعانات به همراه MEG از Receiving facilities وارد اين واحد مي‌شوند. اين جريان با هيدروكربنهايي كه از جدا كننده‌هاي تحت فشار (100-D-1022, 100-D-101) مي‌آيد تركيب شده و درصدي 103-E-101 A/B به وسيله Condensate stabilized پيش گرم مي‌شود. پس از خروج اين جريان از مبدل، جريانهاي ديگري نيز به آن متصل مي‌شوند كه در زير آمده است:

مايعات هيدروكربني كه از Trianها آمده‌اند (واحدهاي 101 و 104)

off- spec condensate كه از تانك 143-T-102 به عنوان يك جريان موقت در طول عمليات خالي سازي تانك مي‌آيد.

جريان برگشتي از پمپ 105-P-108 ؟ زماني كه محصول مشخصات لازم را ندارد يا در حال recycle است.

كل جريانات فوق، Preflash drum (105-D-101) وارد مي‌شود كه در شرايط ◦C5 و 27 barg كار مي‌كند. دماي ورودي 103-D-101 به وسيله by pass كردن كولر (103-A-101) stabilized condensate كنترل مي‌شود.

 

Preflash:

اين drum يك جدا كننده سه فازي مي‌باشد:

– فازگاري به مرحله دوم كمپرسور فرستاده مي‌شود. مقدار اضافي گاز نيز در صورت وجود flare مي‌رود. در خروجي گاز از اين drum جلوگيري كننده از خوردگي تزريق مي‌شود.

– فاز MEG به واحد بازيافت و تزريق MEG فرستاده مي‌شود و قبل از آن به وسيله 103-F-101 A/B فيلتر مي‌شود.

– فاز هيدروكربني به وسيله پمپ 103-D-101 A/B به نمك گير 103-D-105 فرستاده مي‌شود.

برای رفتن به بخش هفتم کلیلک کنید

 

 

قوز قرنیه چیست و راه های درمان آن کدام است

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

قوز قرنیه و درمان آن

قرنیه طبیعی منظم و کروی شکل است. اما زمانی که چشم مبتلا به کراتوکونوس باشد،

با بيرون زدگي قرنيه،

نازك شدن آن و ايجاد شكل مخروطي، به تدريج شكل قرنيه تغيير پیدا مي كند.

به علت تغيير شكل ايجاد شده، این وضعیت قوز قرنیه خوانده مي شود.

تغییر شکل قرنیه که به دلیل کراتوکونوس به وجود می آید، منجر به انحراف دید پیشرونده ای می شود

که معمولا با افزایش میوپی (نزدیک بینی) و آستیگماتیسم نامنظم همراه است.

یکی از بیماری های کمتر شناخته شده پزشکی که تشخیص آن توسط بیمار به راحتی امکان پذیر نیست،

بیماری قوز قرنیه می باشد. این دست از افراد معمولا با مشکل کاهش بینایی درگیر هستند.

اگر شما هم اطلاعات چندانی در این مورد ندارید و می خواهید بیشتر با این بیماری آشنا شوید،

توصیه می کنیم با ما همچنان همراه باشید.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

قوز قرنیه چیست؟

همان طور که از نام این بیماری مشخص است،

قوز قرنیه یا کراتوکونوس از جمله بیماری های مربوط به قرنیه چشم بوده که معمولا در دوران نوجوانی

و یا در دهه سوم زندگی ایجاد می شود. افرادی که به بیماری قوز قرنیه مبتلا هستند،

قرنیه شان نازک شده و معمولا تغییر شکل می دهد.

این مشکل می تواند در یک یا هر دو چشم بیمار ایجاد شود.

ولی به طور متوسط هر دو چشم درگیر این بیماری می شوند.

البته شدت و میزان رشد بیماری در هر دو چشم یکسان نیست.

معمولا برآمدگی و تغییر شکل قرنیه به شکل مخروطی شکل است و از حالت کروی و گرد خود خارج می شود.

در افرادی که مبتلا به این بیماری هستند، انکسار و شکست نور هنگام ورود به چشم دچار مشکل شده

و در نهایت باعث اختلال در بینایی فرد می شود.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

معمولا بروز این بیماری در افرادی که سابقه چنین بیماری را در خانواده شان دارد، بیشتر دیده می شود.

قطعا تشخیص زود هنگام این بیماری می تواند از پیشرفت آن جلوگیری کرده

و فرد در سنین ابتدایی درگیر شدن به این بیماری درمان شود.

البته راه های درمان بسیار زیادی برای این بیماری وجود دارد که در ادامه به این موضوع نیز خواهیم پرداخت.

علل و علائم قوز قرنیه

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

در سال های اولیه ایجاد این بیماری در فرد، معمولا علائم و نشانه ها به روشنی نمایان نمی شوند.

افرادی که شماره عینک آن ها مکررا و با فاصله زمانی کم تغییر می کند،

از کاندیداهای اصلی این بیماری هستند.

همچنین این بیماری ریشه ژنتیکی نیز دارد و افرادی که یک یا چند نفر از خانواده شان

به این بیماری دچار هستند، ممکن است، از این بیماری رنج ببرند.

کاهش دید شدید در این بیماری به وضوح دیده می شود که در معاینات اولیه ممکن است

به اشتباه دیگر بیماری های چشمی نظیر ضعیف شدن چشم ها و یا آستیگماتیسم تشخیص داده شوند.

جالب است بدانید که قوز قرنیه ممکن است با دیگر بیماریها نظیر اتیوپی یا حساسیت همراه باشد.

پس حساسیت های بهاره، آسم، کهیر و … را دست کم نگیرید.

این بیماری ها ممکن است علائمی از ایجاد قوز قرنیه باشند.

همچنین استفاده از لنز های تماسی و مالش چشم با دست، می توانند در ایجاد این بیماری نقش داشته باشند.

کراتوکونوس غالبا نوجوانان و افراد در سالهای ابتدای جوانی را مبتلا می سازد.

با این حال مواردی از ابتلای افراد 40 تا 50 ساله نیز گزارش شده است. افراد هر نژاد،

در هر دو جنس، و ساکن هر نقطه از جهان و در هر طبقه اجتماعی می توانند مبتلا به کراتوکونوس شوند.

نخستین نشانه کراتوکونوس تاری دید است

که به دلیل ایجاد تغییرات در شکل قرنیه به دنبال میوپی یا آستیگماتیسم

ناشی از کراتوکونوس به وجود می آید.

در مراحل ابتدايي قوز قرنيه، معمولا ديد به كمك عينك به خوبي اصلاح مي شود.

با پيشرفت قوز قرنيه و افزايش مشكل انكساري، ممكن است نياز باشد كه شماره عينك مرتبا تغيير كند.

پس از طی مراحل ابتدایی کراتوکونوس،

عینک نمی تواند کیفیت دید مناسبی برای شخص فراهم آورد؛

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

از این رو ممکن است نیاز به لنز های تماسی خاصی وجود داشته باشد.

کراتوکونوس معمولا در یک دوره 10 تا 15 ساله پیشرونده است و پس از آن تقریبا تثبیت می شود.

در برخی موارد ممکن است پیشرفت کراتوکونوس بسیار سریع و غیر قابل کنترل رخ دهد

و در مراحل پیشرفته این بیماری، ممکن است فرد نتواند لنزهای تماسی را تحمل کند.

در موارد بسیار پیشرفته، ممکن است روی سطح قرنیه اسکار ایجاد گردد

که باعث ایجاد آسیب های بیشتر در دید

فرد شده و ممکن است منجر به از دست رفتن بینایی شود.

راه های درمان قوز قرنیه

برای درمان قوز قرنیه روش های بسیار زیادی وجود دارد

که بنا به تشخیص پزشک متخصص روش بهتر اعمال می شود.

در نوع خفیف این بیماری معمولا پزشک متخصص چشم به شما استفاده از عینک یا لنز را توصیه می کند.

اما در مراحل پیشرفته تر این بیماری معمولا استفاده از لنزهای سخت با قابلیت نفوذ گاز توصیه می شود.

در مواردی که حتی استفاده از لنزهای سخت هم چاره کار نیست،

راهکار باقی مانده عمل جراحی پیوند قرنیه می باشد.

از جمله روش های درمان با عمل جراحی می توان به عمل قرار دادن حلقه در داخل قرنیه در بیماری های خفیف،

کمک به دید بهتر با عینک است.

این روش معمولا به بیمارانی توصیه می شود که عینک تاثیری در دید آن ها نداشته

و قرار دادن لنز در چشم نیز برایشان مقدور نیست.

روش دیگر عمل جراحی پیوند قرنیه است که تعداد کمی از بیماران به این عمل نیاز دارند.

معمولا این عمل سلامتی کامل را به بیماران باز می گرداند و در بیماری های شدید استفاده می شود.

علاوه بر این ها عمل جراحی دیگری با نام عمل پیوند متقاطع بین کلاژن های قرنیه وجود دارد که باعث می شود،

فرد دیگر نیازی به عمل جراحی پیوند قرنیه احساس نکند.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

تاثیر و خطرات مواد شیمیایی بر ریه

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

اگر مواد شیمیایی وارد ریه ها شوند…

ما نفس می کشیم تا اکسیژن را وارد ریه‌های خود کنیم.

ولی تنفس ما به منظور خارج کردن عناصر شیمیایی مانند دی اکسید کربن از بدن نیز هست.

سطح غشای داخلی بینی و گلوی ما را ماده مخاطی و مژک‌ها یا مویچه‌ها پوشانده اند

که وظیفه آن‌ها به دام انداختن ذرات گرد و غبار موجود در هوایی که تنفس می‌کنیم است.

آن‌ها در فرصت‌های مناسب ذرات غبار را جذب می‌کنند، چون همچنان که دم و بازدم را انجام می دهیم

هوا از مقابل آن‌ها عبور می کند و ذرات گرد و غبار به موقع جمع آوری می‌شوند،

پیش از این که با سطح ریه‌ها تماس پیدا کنند.


هنگامی که افراد سیگاری دود سیگار را فرو می برند، نیکوتین وارد ریه‌ها شده

و از آن جا وارد جریان خون می شود و سپس به مغز منتقل می شود.

مولکول‌های دیگر دود از جمله دی اکسید کربن نیز به همین طریق وارد خون خواهند شد.

مولکول‌های دی اکسید کربن محکم تر از مولکول‌های اکسیژن به هموگلوبین خون (پروتئین حمل کننده اکسیژن)

متصل می شوند، در نتیجه مجال کمتری به مولکول‌های اکسیژن می دهند و اکسیژن کمتری به مغز و ماهیچه‌ها

می رسد.


مولکول‌های دیگری هم در دود سیگار هستند که وارد جریان خون می شوند یا در ریه‌ها لانه می کنند.

بدین ترتیب باعث بروز سرطان ریه یا سرطان دهان، گلو و حلق می شوند.


در محیط خانه ذرات مواد شیمیایی هستند که تنفس آن‌ها ناراحتی ایجاد می کند.

آمونیاک و ماده سفید کننده هر دو دارای ترکیبات قلیایی قوی هستند که می توانند به سلول‌ها آسیب برسانند.

ترکیب مواد شوینده یا پاک کننده‌‌ها با مواد سفید کننده در فضای کوچکی مانند حمام یا دستشویی خطرناک است،

زیرا از فعل و انفعالات شیمیایی ترکیب این مواد گاز کلرآزاد می‌‌شود و با رطوبت مخاط دهان اسید کلریدریک

ایجاد می‌ کند که بسیار قوی و سوزاننده است و استنشاق آن در فضاهای کوچک علایم شدید تنفسی ایجاد

می ‌کند.

بدترین شکل استفاده از مواد پاک کننده و شوینده آن است که با آب گرم مخلوط شوند

یا از آن‌ها در محیط‌های بسته ‌ای که بخار آب وجود دارد، استفاده کرد

به همین منظور پیشنهاد می ‌شود از مواد شوینده و پاک کننده ‌ای استفاده شود که آسیب کمتری می‌ رساند.

برای مثال استفاده از پودرهای شوینده که آنزیم هم دارند، بسیار ایمن‌ تر از استفاده از مواد سفید کننده‌ ای است که بخار دارند.

بسیاری از مواد ضدعفونی کننده به راحتی از ماسک‌های کاغذی عبور می ‌کنند و می ‌توانند موجب آسیب دیدن

ریه شوند.

بنابراین تهویه مناسب محل، روشن کردن هواکش و بازکردن پنجره‌‌ها، استفاده نکردن از محلول‌های غلیظ و

بستن دستمال ضخیم مرطوب روی دهان و بینی، می ‌تواند تا حد زیادی از بروز آلرژی‌‌ها و پیشگیری از این

مشکلات کمک کند.

پوشیدن دستکش و ماسک نیز هنگام استفاده از محصولات سوزاننده ضروری است.

استفاده از مواد شوینده شیمیایی ممکن است باعث تشدید بیماری‌‌های قلبی ـ عروقی و ریوی شود.

مواد شوینده شیمیایی به زنان باردار، افراد مسن و کودکان بیشتر آسیب می ‌رساند.


پس از مصرف مواد شوینده، سفید کننده، جرم گیر و لوله بازکن در محیط‏‏‌‌های دربسته و کوچک مانند دستشویی

و حمام به هیچ‌ عنوان در این مکان‎‎‌ها توقف جایز نیست چرا که گازهای تولید شده در این محیط‎‎های بدون تهویه

مناسب، خفه کننده و سمی هستند.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی


نخستین و بهترین اقدام برای مسمومان ریوی، خروج سریع فرد از محل سرپوشیده و استفاده از هوای آزاد و

قرار گرفتن در معرض جریان هواست، چرا که استنشاق هوای تازه، تنفس را تسهیل می ‌کند و باعث ایجاد

آرامش می ‌شود. استفاده از بخور، به خصوص بخور سرد بسیار کارآمد است. خودداری از صحبت کردن نیز

مفید است. در عین حال ارجاع هر چه سریع تر به پزشک یا تماس با اورژانس ضروری است.


مقادیر اندک مونو اکسیدکربن برای سلامتی خطرناک است و منجر به بروز اختلال تنفسی و

تنفس سلولی به

خصوص در محیط‌های بسته می ‌شود. همچنین سردرد، سرگیجه، حالت خواب‌آلودگی


‌و بیهوشی از علائم استنشاق با مونواکسید کربن است.


اکسید نیتروژن نیز باعث تحریک چشم، بینی، گلو و شش‌ها می ‌شود و افزایش آسیب ‌پذیری بدن انسان در برابر عفونت‌ها به ویژه آنفلوانزا را به دنبال دارد.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی


*

يک متخصص ريه: گاز ناشي از شوينده‌ها،

راه‌هاي هوايي بدن را به شدت تحت تاثير قرار مي‌دهد

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

يک متخصص ريه با اشاره به عوارض ناشي از شوينده‌ها، گفت: گاز ناشي از مواد اسيدي شوينده‌ها نه تنها

راه‌هاي هوايي بدن را شديدا تحت تاثير قرار مي‌دهد، بلکه عوارض بدي را براي چشم و پوست به همراه دارد.

روشهای رفع آسیبی که مواد شوینده به بدن وارد می کند 

نوشیدن آب فراوان:

  • نوشیدن آب فراوان باعث خروج آب زیادی از بدن می شود که در واقع میزان باقی مانده مواد شیمیایی را
  • کاهش می دهد.
  • پیاده روی در طبیعت:
  • اگر به خوبی ورزش انجام دهید ریه های اکسیژن تازه را دریافت کرده و مواد شیمیایی سمی را بیرون می
  • فرستند . ورزش را در جایی انجام دهید که تعداد زیادی درخت سبز شاداب و گیاهان در حال رشد و اکسیژن
  • تازه وجود دارد. پیاده روی به مدت 1 تا 2 ساعت پس از استنشاق مواد شیمیایی می تواند به ریه ها کمک کند
  • تا آلودگی ها را بیرون بریزد.
  •  پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی
  • مصرف آب سبزیجات:
  • سبزیجات برگ دار به عنوان سم زدا و ابزار بسیار خوبی برای انتقال مواد شیمیایی به بیرون از بدن شناخته
  • شده اند.
  • ویتامین ث:
  • همانطور که ویتامین ث از بدن شما در برابر آسیب سرما خوردگی یا آنفولانزا محافظت می کند ،
  • می تواند سموم را نیز از بدن پاک کند و بدن را از اثرات مضر قرار گرفتن در معرض مواد شیمیایی محافظت
  • کند. شما نمی توانید در یک زمان بیش از حد ویتامین ث بخورید، بنابراین هر ساعت 500 – 1000 میلی گرم
  • ویتامین ث مصرف کنید. 
  • تعریق:
  • عرق کردن یکی از بهترین روش های دفع مواد شیمیایی است چه در حمام باشد یا سونا 
  • تمرکز روی افکار شاد:
  • هنگام تنفس ذرات سرطان زا فکر کردن به چیز دیگر سخت به نظر می رسد اما برای اینکه مشکل را تشدید
  • نکنیم بهتر است به چیزهای مثبت فکر کنیم.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

پدیده هیستریزین در مکانیک مواد

پدیده هیستریزین در مکانیک مواد

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مکانیک

پسماند یا «هیسترزیس» (Hysteresis)، پدیده‌ای است که وابستگی حالت فعلی یک سیستم به حالت‌های قبلی (مسیر تغییرات) آن را نمایش می‌دهد. این پدیده کاربردهای زیادی در حوزه‌های مختلفی نظیر فیزیک، شیمی، مهندسی، زیست‌شناسی و اقتصاد دارد. در این مقاله به معرفی تعاریف و کاربردهای پدیده هیسترزیس در حوزه مکانیک مواد نظیر هیسترزیس الاستیک، زاویه تماس، شکل حباب، جذب سطحی و پتانسیل ماتریک خواهیم پرداخت.
هیسترزیس الاستیک:
هیسترزیس الاستیک، از اولین انواع هیسترزیس بود که مورد توجه محققین قرار گرفت. در این پدیده، ناحیه مرکزی حلقه هیسترزیس اتلاف انرژی ناشی از اصطکاک داخلی ماده را نمایش می‌دهد. برای درک بهتر پدیده هیسترزیس الاستیک می‌توان یک نوار لاستیکی و تعدادی وزنه متصل به انتهای آن را در نظر گرفت. اگر بخش بالایی نوار لاستیکی بر روی یک قلاب آویزان و تعدادی وزنه کوچک یک به یک به انتهای آن اضافه شود، طول نوار بیشتر خواهد شد. اضافه کردن وزنه‌های بیشتر باعث افزایش نیروی اعمال شده و در نتیجه ادامه یافتن افزایش طول نوار می‌شود. برداشتن وزنه‌ها، نیروی اعمال شده به نوار را کاهش می‌دهد. در نتیجه، طول نوار کاهش می‌یابد. حذف وزنه‌هایی که هر یک باعث ایجاد یک افزایش طول مشخص در نوار شده بودند، باقی ماندن یک افزایش طول جزئی نسبت به طول اولیه را در پی دارد؛ زیرا نوار لاستیکی به طول کامل از قانون هوک پیروی نمی‌کند. در شکل زیر، حلقه هیسترزیس برای یک نوار لاستیکی ایدئال (بازگشت به طول اولیه پس از باربرداری) نمایش داده شده است.
وجود پدیده هیسترزیس الاستیک بیشتر برای بارگذاری و باربرداری‌های سریع معرفی شده است. برخی از مواد از جمله فلزات سخت بر خلاف مواد سخت دیگر (مانند گرانیت و مرمر)، هیچ هیسترزیس الاستیکی را در حین بارگذاری‌های متوسط از خود به نمایش نمی‌گذارند. در موادی نظیر لاستیک‌ها می‌توان سطح بالایی از هیسترزیس الاستیک را مشاهده کرد.
در هنگام اندازه‌گیری هیسترزیس ذاتی لاستیک می‌توان رفتار ماده را همانند یک گاز در نظر گرفت. هنگام افزایش طول نوار لاستیکی، دمای آن افزایش می‌یابد. اگر آزادسازی این گرما به طور ناگهانی صورت گیرد، فرآیند سرد شدن آن به طور محسوس قابل مشاهده خواهد بود. این مسئله با هیسترزیس بزرگ ناشی از تبادل دما با محیط اطراف و هیسترزیس کوچک ناشی از اصطکاک داخلی لاستیک ارتباط دارد. این نوع هیسترزیس ذاتی، تنها در صورت ایزوله بودن آدیاباتیک نوار لاستیکی قابل اندازه‌گیری است.
برای ساخت سیستم تعلیق یا فنربندی وسایل نقلیه کوچک از مواد لاستیکی یا دیگر الاستومرها استفاده می‌شود. این سیستم‌ها امکان بهره‌مندی از عملکرد دوگانه حرکت فنری و میرایی را فراهم می‌کنند؛ زیرا مواد لاستیکی برخلاف فنرهای فلزی دارای هیسترزیس هستند و تمام انرژی فشاری جذب شده را به طور ناگهانی بازنمی‌گردانند. دوچرخه‌های کوهستان نیز با به کارگیری سیستم فنربندی الاستومری ساخته می‌شوند.
هیسترزیس دلیل اصلی وجود مقاومت یا اصطکاک غلتشی در هنگام غلتیدن اجسامی نظیر توپ، تایر یا چرخ بر روی یک سطح است. این موضوع به خاصیت ویسکوالاستیک ماده به کار رفته در جسم در حال غلتش مربوط می‌شود.
هیسترزیس زاویه تماس:
تماس ایجاد شده بین یک مایع و سطح جامد، محدوده‌ای از زوایای تماس ممکن را در برمی‌گیرد. به طور کلی، دو روش متداول برای اندازه‌گیری این محدوده وجود دارد. روش اول با عنوان «روش تغییر شیب سطح» (Tilting Base Method) شناخته می‌شود. در این روش، پس از قرار گرفتن قطره مایع بر روی یک سطح داری تراز، شیب سطح از 0 تا 90 درجه تغییر می‌کند. هم‌زمان با کج شدن قطره، بخش پایینی آن در معرض رطوبت قریب‌الوقوع و بخش بالایی آن در معرض کاهش رطوبت قریب‌الوقوع قرار می‌گیرد. با افزایش شیب سطح، زاویه سطح تماس قطره در بخش پایینی افزایش و زاویه سطح تماس قطره در بخش بالایی کاهش خواهد یافت. مقادیر این زوایا در لحظه رها شدن و شروع حرکت قطره، به ترتیب با عنوان زوایای تماس پیش‌رونده و پس‌رونده شناخته می‌شوند. اختلاف بین این دو زاویه، «هیسترزیس زاویه تماس» (Contact Angle Hysteresis) است.
روش دوم تعیین محدوده زاویه تماس با عنوان «روش افزودن/برداشت حجم» (Add/Remove Volume Method) شناخته می‌شود. در هنگام برداشت بیشترین حجم مایع از قطره بدون کاهش مساحت سطح مشترک، زاویه تماس پس‌رونده اندازه‌گیری می‌شود. اندازه‌گیری زاویه تماس پیش‌رونده نیز در هنگام افزودن بیشترین حجم مایع به قطره تا قبل از شروع افزایش مساحت سطح مشترک صورت می‌گیرد. اختلاف بین این دو زاویه، بیانگر هیسترزیس زاویه تماس است. اکثر محققین استفاده از روش تغییر سطح شیب را ترجیح می‌دهند؛ زیرا در روش افزودن/برداشت حجم، سوزن مورد استفاده باید به صورت ثابت درون قطره باقی بماند. این کار بر روی دقت مقادیر اندازه‌گیری شده (بخصوص زاویه تماس پس‌رونده) تأثیرگذار است.
هیسترزیس شکل حباب
حباب‌های در حال انبساط و انقباض بر روی لوله‌های مویینه (مانند سرسوزن سرنگ) می‌توانند پدیده هیسترزیس را از خود به نمایش بگذارند. در این وضعیت، هیسترزیس به مقدار حداکثر فشار مویینگی نسبت به فشار محیط و حجم حباب در حداکثر فشار مویینگی نسبت به حجم مرده درون سیستم بستگی دارد. «هیسترزیس شکل حباب» (Bubble Shape Hysteresis) نتیجه تراکم‌پذیری گازها است که باعث رفتار متفاوت حباب‌ها در حین انقباض و انبساط می‌شود. در حین فرآیند انبساط، چندین جهش بزرگ نامتعادل در میزان حجم حباب‌ها رخ می‌دهد. در حین فرآیند انقباض، وضعیت حباب‌ها پایدارتر و تغییرات ناگهانی حجم نیز کوچک‌تر هستند. این مسئله عدم تقارن بین انبساط و انقباض را در پی دارد. همانند هیسترزیس زاویه تماس، خواص بین سطحی نقش مهمی را در هیسترزیس شکل حباب بازی می‌کنند.
هیسترزیس جذب
پدیده هیسترزیس در فرآیندهای جذب سطحی فیزیکی (فلوتاسیون) نیز رخ می‌دهد. در این نوع هیسترزیس، میزان ماده جذب شده در هنگام اضافه کردن گاز با میزان ماده جذب شده در هنگام حذف گاز متفاوت است. تعیین دلایل وجود هیسترزیس جذب، یکی از حوزه‌های تحقیقاتی فعال به شمار می‌رود. با این وجود، به نظر می‌رسد که این پدیده به تفاوت بین مکانیسم‌های هسته‌زایی و تبخیر درون مزوحفره‌های (حفره‌هایی با مقیاسی بین میکرو و ماکرو) ارتباط دارد. عواملی نظیر کاویتاسیون و انسداد حفره‌ها باعث پیچیده‌تر شدن مکانیسم‌های مذکور می‌شوند.
در جذب سطحی فیزیکی که پدیده هیسترزیس در آن یکی از شواهد وجود تخلخل‌های مزوسکوپی است، تعریف مزوحفره (2 تا 50 نانومتر) با قابل مشاهده بودن (50 نانومتر) و غیر قابل مشاهده بودن (2 نانومتر) تخلخل‌های مزوسکوپی در ایزوتِرم‌های جذب سطحی نیتروژن ارتباط دارد. یک ایزوترم جذب سطحی که هیسترزیس را از خود به نمایش می‌گذارد، به عنوان ایزوترم نوع V یا نوع IV در نظر گرفته می‌شود. طبقه‌بندی حلقه‌های هیسترزیس جذب نیز با توجه به نحوه تقارن حلقه صورت می‌گیرد. یکی از ویژگی‌های غیر معمول حلقه‌های هیسترزیس جذب، امکان اسکن حلقه هیسترزیس به وسیله معکوس کردن جهت جذب در هنگام قرارگیری بر روی یکی از نقاط حلقه است. با توجه به شکل ایزوترم در نقطه مورد بررسی، به اسکن صورت گرفته «تقاطع» (Crossing)، «همگرایی» (Converging) یا «بازگشت» (Returning) گفته می‌شود.
هیسترزیس پتانسیل ماتریک
مبنای رسم منحنی نگهداشت، رابطه بین پتانسیل ماتریک و محتوای آب است. تبدیل مقادیر اندازه‌گیری شده پتانسیل ماتریک (Ψm) و تعیین مقادیر محتوای حجمی آب (θ)، بر اساس یک منحنی کالیبراسیون مخصوص صورت می‌گیرد. در طی فرآیند اندازه‌گیری محتوای آب، وجود پدیده هیسترزیس می‌تواند باعث به وجود آمدن خطا در محاسبات شود. هیسترزیس پتانسیل ماتریک به دلیل تفاوت نحوه مرطوب شدن مجدد یک محیط خشک رخ می‌دهد. این فرآیند به تاریخچه اشباع‌شدگی محیط متخلخل بستگی دارد. به عنوان مثال، محتوای حجمی آب برای یک محیط شامل خاک رس ریز در پتانسیل ماتریک 5 کیلو پاسکال (kPa)، با توجه به میزان اشباع‌شدگی قبلی محیط در محدوده‌ای بین 8 تا 25 درصد تغییر می‌کند.

«تانسیومتر»، وسیله‌ای برای اندازه‌گیری وضعیت رطوبت خاک (پتانسیل ماتریک آب) است. این وسیله تحت تأثیر مستقیم هیسترزیس پتانسیل ماتریک قرار دارد. علاوه بر این، سنسورهای مورد استفاده برای اندازه‌گیری پتانسیل ماتریک آب نیز در داخل خود با پدیده هیسترزیس مواجه می‌شوند. بلوک‌های مقاوم نایلونی و گچی، میزان پتانسیل ماتریک را به صورت تابعی از مقاومت الکتریکی اندازه‌گیری می‌کنند. رابطه بین مقاومت الکتریکی و پتانسیل ماتریک سنسور، هیسترزیس را نمایش می‌دهد. ترموکوپل‌ها نیز پتانسیل ماتریک را به صورت تابعی از اتلاف حرارت اندازه‌گیری می‌کنند. دلیل وجود هیسترزیس در این اندازه‌گیری، وابستگی اتلاف حرارت به محتوای آب سنسور است (وجود هیسترزیس رابطه بین محتوای آب سنسور و پتانسیل ماتریک). از سال 2002 به بعد، در اکثر مواقع تنها منحنی دفع رطوبت در حین کالیبراسیون سنسورهای رطوبت‌سنج خاک مورد اندازه‌گیری قرار می‌گیرند. علیرغم احتمال وجود خطای قابل توجه در این روش، تأثیر هیسترزیس مختص به سنسور به طور کلی نادیده گرفته می‌شود.















































 

مکانیک شکست قسمت2

مکانیک شکست قسمت2

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مکانیک

ضریب شدت تنش:
یکی دیگر از دستاوردهای مهم اروین و همکارانش، یافتن روشی برای محاسبه مقدار انرژی قابل دسترس شکست با توجه به تنش مجانبی و میدان‌های جابجایی اطراف بخش جلویی ترک در یک جامد الاستیک خطی بود. رابطه بین عبارت مجانبی تنش نرمال در حالت اول بارگذاری و ضریب شدت تنش به صورت زیر است:



σij: تنش‌های کوشی؛ x: فاصله نقطه مورد بررسی تا نوک ترک؛ θ: زاویه نقطه مورد بررسی نسبت به صفحه دربرگیرنده ترک؛ fij: توابع وابسته به هندسه ترک و شرایط بارگذاری

اروین کمیت K را «ضریب شدت تنش» (Stress Intensity Factor) نام‌گذاری کرد. از آنجایی که کمیت fij بدون بعد است، ضریب شدت تنش با واحد مگا پاسکال در جذر متر (MPam0.5) بیان می‌شود. با در نظر گرفتن مدل ریاضی «سخت‌کننده» (Stiffener) نیز یک عبارت مجانبی مشابه برای میدان تنش به دست می‌آید.
آزادسازی انرژی کرنشی:
بر اساس مشاهدات اروین، در صورتی که اندازه ناحیه پلاستیک اطراف یک ترک نسبت به طول آن کوچک باشد، انرژی مورد نیاز برای رشد ترک وابستگی زیادی به حالت تنش در نوک ترک نخواهد داشت. به عبارت دیگر، در این حالت می‌توان از یک راه حل کاملاً الاستیک برای محاسبه مقدار انرژی قابل دسترس شکست استفاده کرد. به این ترتیب، نرخ آزادسازی انرژی برای رشد ترک یا «نرخ آزادسازی انرژی کرنشی» (Strain Energy Release Rate) به صورت تغییرات انرژی کرنشی الاستیک بر واحد مساحت رشد ترک قابل محاسبه خواهد بود:

U: انرژی الاستیک سیستم؛ a: طول ترک؛ P: اندیس شرایط بارگذاری ثابت؛ u: اندیس شرایط جابجایی ثابت اروین نشان داد که رابطه بین نرخ آزادسازی انرژی کرنشی و ضریب شدت تنش برای ترک حالت اول (بازشدگی) به صورت زیر بیان می‌شود:

E: مدول یانگ؛ v: نسبت پواسون؛ KI: ضریب شدت تنش حالت اول

علاوه بر این، اروین نشان داد که نرخ آزادسازی انرژی کرنشیِ یک ترک مسطح در یک جسم الاستیک خطی برای اکثر شرایط بارگذاری عمومی را می‌توان با توجه به ضریب شدت تنش برای ترک‌های حالت اول، حالت دوم (لغزش) و حالت سوم (پارگی) بیان کرد.

در قدم بعدی، اروین فرض کرد که اندازه و شکل ناحیه اتلاف انرژی در طی شکست ترد تقریباً ثابت باقی می‌ماند. بر اساس این فرضیات، انرژی مورد نیاز برای ایجاد یک واحد سطح شکست، ثابتی است که تنها به نوع ماده بستگی دارد. این ثابت، یک ویژگی مادی جدید با عنوان «چقرمگی شکست» (Fracture Toughness) بود که با GIc نمایش داده می‌شد. امروزه، این ثابت با نام ضریب شدت تنش بحرانی (KIc) و به عنوان ویژگی معرف مکانیک شکست الاستیک خطی شناخته می‌شود (شرایط کرنش صفحه‌ای).
ناحیه پلاستیک نوک ترک:
از نظر تئوری، در نقطه‌ای نزدیک به شعاع صفر، تنش موجود در نوک ترک بی‌نهایت خواهد بود. این مسئله را می‌توان به عنوان تکینگی تنش در نظر گرفت. باید توجه داشت که وجود تکینگی تنش در مسائل واقعی امکان‌پذیر نیست. به همین دلیل، در مطالعات عددی حوزه مکانیک شکست، استفاده از شکاف‌های مدور و نوک‌تیز برای نمایش ترک‌ها روش مناسب‌تری به شمار می‌رود که در آن به جای تکینگی نوک تر از یک ناحیه تمرکز تنش وابسته به هندسه استفاده می‌شود. بر اساس آزمایش‌های صورت گرفته، تمرکز تنش نوک ترک در مواد واقعی دارای یک مقدار محدود اما بزرگ‌تر از تنش اسمی اعمال شده بر روی نمونه است. مقدار تنش‌های موجود در نزدیکی نوک یک ترک را می‌توان با کمک معادله زیر محاسبه کرد:

σl: مقدار تنش در نزدیکی نوک ترک؛ σ: مقداری وابسته به تنش اسمی اعمال شده؛ Y: ضریب تصحیح وابسته به هندسه نمونه؛ r: فاصله شعاعی تا نوک ترک
به این ترتیب، حتماً یک ویژگی یا مکانیسم خاص درون ماده وجود دارد که مانع از گسترش خود به خودی ترک می‌شود. بر اساس فرضیات، تغییر شکل پلاستیک در نوک ترک، تیزی آن را کاهش می‌دهد. این تغییر شکل پیش از هر چیزی به تنش اعمال شده در راستای مناسب (در اکثر موارد، راستای y در دستگاه مختصات کارتزین)، طول ترک و هندسه نمونه بستگی دارد. جورج اروین به منظور تخمین چگونگی گسترش ناحیه تغییر شکل پلاستیک، مقاومت تسلیم ماده را با تنش‌های میدان‌های دور در راستای y و در امتداد ترک (راستای x) برابر قرار دارد. سپس، معادله به دست آمده را نسبت به شعاع مؤثر حل کرد. اروین با استفاده از این رابطه، معادله زیر را برای تعیین شعاع ایدئال ناحیه پلاستیک در نوک ترک به دست آورد:

مدل‌های ارائه شده برای مواد ایدئال، قرارگیری ناحیه پلاستیک به دست آمده از رابطه بالا در مرکز نوک ترک را تأیید می‌کنند. رابطه بالا، شعاع ایدئال تغییر شکل ناحیه پلاستیک در بخش بالایی نوک ترک را به دست می‌آورد. این شعاع در بسیاری از علوم مرتبط با سازه کاربرد دارد؛ چراکه مقدار آن تقریب خوبی برای درک نحوه رفتار ماده در هنگام اعمال تنش است. پارامترهای ضریب شدت تنش و شاخص چقرمگی ماده (KC) و تنش تسلیم (σY) اطلاعات زیادی را راجع به ماده، خواص آن و اندازه ناحیه پلاستیک نمایش می‌دهند. به همین دلیل، این پارامترها از اهمیت بالایی برخوردار هستند. به عنوان مثال، در صورت بالا بودن مقدار KC، می‌توان نتیجه گرفت که ماده چقرمه (در برابر شکست مقاوم) است. در طرف مقابل، اگر مقدار σY زیاد باشد، می‌توان به شکل‌پذیری بیشتر ماده پی برد. نسبت این دو پارامتر نیز برای تعیین شعاع ناحیه پلاستیک اهمیت دارد. در صورتی که σY کوچک باشد، نسبت مربع Kبه σY (مانند رابطه بالا) بزرگ خواهد بود. در نتیجه، شعاع ناحیه پلاستیک نیز مقدار بزرگی خواهد شد. این وضعیت نشان می‌دهد که ماده می‌تواند به صورت پلاستیک تغییر شکل دهد و بنابراین چقرمه است. در مجموع، تخمین اندازه ناحیه پلاستیک در بالای نوک ترک را می‌توان به منظور تحلیل دقیق‌تر نحوه رفتار ماده در حضور ترک‌ها مورد استفاده قرار داد.
بارگذاری چرخه‌ای نیز فرآیندی مشابه با مراحل بالا را شامل می‌شود. اگر یک نمونه تحت بارگذاری چرخه‌ای دارای ترک باشد، تغییر شکل پلاستیک در محل نوک ترک رخ خواهد داد و رشد آن با تأخیر مواجه خواهد شد. در صورت وجود نوسان یا بارگذاری اضافی، مدل فعلی به میزان کمی تغییر می‌کند. دلیل این امر، مطابقت مدل با افزایش ناگهانی تنش نسبت به شرایط بارگذاری قبلی است. در بارگذاری‌های بزرگ (بارگذاری اضافی)، رشد ترک تا بیرونِ ناحیه پلاستیک ادامه می‌یابد و از محدوده تغییر شکل پلاستیک اولیه عبور می‌کند. اگر فرض کنیم که بزرگی تنش اضافی برای ایجاد شکست کامل در نمونه کافی نباشد، ترک در محل نوک جدید خود تحت تأثیر تغییر شکل پلاستیک بیشتر قرار می‌گیرد. این مسئله باعث بزرگ‌تر شدن ناحیه تنش‌های پسماند پلاستیک می‌شود. فرآیند مذکور، چقرمگی و عمر ماده را افزایش می‌دهد؛ چراکه ناحیه پلاستیک جدید از ناحیه پلاستیک در شرایط اعمال تنش عادی بزرگ‌تر خواهد بود. علاوه بر این، افزایش ناحیه پلاستیک، ظرفیت ماده در برابر تحمل بارگذاری چرخه‌ای را نیز بهبود می‌بخشد.
چقرمگی شکست و روش‌های آزمایش آن:
چقرمگی خاصیتی است که میزان مقاومت یک ماده در برابر شکست را بیان می‌کند. این خاصیت مکانیکی، از اهمیت بالایی در مسائل مهندسی برخوردار است. چندین روش مختلف آزمایش برای اندازه‌گیری چقرمگی شکست ماده وجود دارد. در این آزمایش‌ها معمولاً از یک نمونه شیاردار در یکی از چندین پیکربندی موجود استفاده می‌شود. با توجه به اهداف مقاله پیش رو، در این بخش به معرفی روش‌های تعیین چقرمگی شکست کرنش صفحه‌ای (KIc) خواهیم پرداخت.
هنگامی که یک ماده پیش از شکست، رفتار الاستیک خطی از خود به نمایش می‌گذارد (مانند حالتی که ناحیه پلاستیک در مقایسه با ابعاد نمونه کوچک است)، مقدار بحرانی ضریب شدت تنش برای ترک حالت اول را می‌توان به عنوان یک پارامتر شکست مناسب در نظر گرفت. این روش با توجه به ضریب شدت تنش بحرانی برای کرنش صفحه‌ای، یک معیار کمی از چقرمگی شکست را ارائه می‌کند. به منظور اطمینان از معنادار بودن نتایج باید پس از اتمام هر آزمایش، اعتبارسنجی‌های مورد نیاز صورت گیرد. ابعاد نمونه باید ثابت و به اندازه‌ای بزرگ باشند که شرایط کرنش صفحه‌ای در نوک ترک را تضمین کنند. این الزامات باعث محدودیت در نحوه اجرای آزمایش می‌شوند.
نکته اصلی در آزمایش‌های مبتنی بر چقرمگی شکست (K) این است که باید از قرار داشتن شکست‌های نمونه تحت شرایط الاستیک خطی اسمی اطمینان حاصل کرد. این مسئله لزوم کوچک بودن ناحیه پلاستیک در مقایسه با مقطع نمونه را نشان می‌دهد.
آزمایش چقرمگی شکست در شرایط کرنش صفحه‌ای
نمونه‌های خمش شکاف تک لبه‌ای (SENB یا خمش سه‌نقطه‌ای) و نمونه‌های فشرده کششی (CT)، متداول‌ترین پیکربندی‌های آزمایش چقرمگی شکست هستند. برای تعیین دقیق چقرمگی شکست کرنش صفحه‌ای باید نمونه‌ای را انتخاب کرد که ضخامت آن از یک مقدار بحرانی (B) بیشتر باشد. بر اساس آزمایش‌های صورت گرفته، شرایط کرنش صفحه‌ای در صورت صادق بودن رابطه زیر کاربرد دارد:

B: حداقل ضخامتی که باعث ایجاد کمترین انرژی کرنش پلاستیک در نوک ترک می‌شود؛ KIC: چقرمگی شکست ماده؛ sy: تنش تسلیم ماده
هنگامی که یک ماده با چقرمگی شکست مجهول مورد آزمایش قرار می‌گیرد، از نمونه‌ای با ضخامت مقطع کامل یا اندازه‌ای متناسب با چقرمگی پیش‌بینی شده آن استفاده می‌شود. اگر مقدار چقرمگی شکست حاصل از آزمایش در رابطه بالا صدق نکند، باید آزمایش را با یک نمونه ضخیم‌تر تکرار کرد. هنگامی که یک آزمایش قادر به برطرف کردن الزامات مورد نیاز (مانند ضخامت) به منظور اطمینان از وجود شرایط کرنش صفحه‌ای نباشد، مقادیر به دست آمده چقرمگی شکست با KC نمایش داده خواهند شد.
حالت‌های تنش صفحه‌ای و تنش انتقالی
در مواقعی که انرژی پلاستیک نوک ترک قابل اغماض نیست، پارامترهای دیگر مکانیک شکست (مانند انتگرال J و منحنی R) برای تعیین خصوصیات ماده مورد استفاده قرار می‌گیرند. داده‌های به دست آمده از آزمایش‌های دیگر به ضخامت نمونه مورد آزمایش بستگی خواهند داشت و به عنوان خواص واقعی ماده محسوب نخواهند شد. اگرچه، شرایط کرنش صفحه‌ای در تمام پیکربندی‌های سازه صادق نیست. از این‌رو، استفاده از مقادیر KIC در طراحی نواحی نسبتاً نازک می‌تواند منجر به نتایج بسیار محافظه‌کارانه و در نتیجه افزایش وزن و هزینه ساخت آن شود. در مواردی که حالت تنش واقعی به صورت صفحه‌ای یا انتقالی باشد، به کارگیری داده‌های به دست آمده از انتگرال J و نمودار R مناسب‌تر خواهد بود. این حالت برای شکست‌های آرام و پایدار (پارگی شکل‌پذیر) نسبت به شکست‌های سریع (شکننده) کاربرد بیشتری دارد. شرط در نظر گرفتن حالت تنش صفحه‌ای یا انتقالی به صورت زیر است:

σc: تنش بحرانی اعمال شده که باعث ایجاد شکست می‌شود؛ KIC: چقرمگی شکست کرنش صفحه‌ای؛ Y: یک ثابت عددی مرتبط با هندسه نمونه؛ a: طول ترک برای ترک‌های لبه‌ای یا نصف طول ترک برای ترک‌های داخلی
محدودیت‌های مکانیک شکست الاستیک خطی
یکی از مشکلاتی که محققان آزمایشگاه تحقیقاتی وابسته به نیروی دریایی ایالات متحده با آن مواجه شدند، رفتار مواد مورد استفاده در ساخت کشتی‌ها (نظیر ورق‌های فولادی بدنه کشتی) بود. این مواد رفتار کاملاً الاستیک ندارند و نوک ترک‌های موجود بر روی آن‌ها نیز در معرض مقدار قابل توجهی از تغییر شکل‌های پلاستیک قرار می‌گیرد. کوچک بودن مقیاس تسلیم ماده به عنوان یکی از فرضیات اساسی اروین در مکانیک شکست در نظر گرفته می‌شود (کوچک بودن اندازه ناحیه پلاستیک نسبت به طول ترک). با این وجود، این فرضیه برای انواع بخصوصی از شکست در فولادهای ساختمانی دارای محدودیت است و امکان ایجاد شکست‌های ترد در این مواد فولادی و رخ دادن حوادث فاجعه‌بار وجود دارد. در مجموع، کاربرد مکانیک شکست الاستیک خطی برای فولادهای ساختمانی محدود بوده و استفاده از آزمایش‌های چقرمگی شکست نیز هزینه‌بر است. به همین دلیل، در این شرایط باید از رویکردهای مکانیک شکست الاستیک-پلاستیک استفاده کرد.
ملاحظات مکانیک شکست در کاربردهای مهندسی:
به منظور اجرای تحلیل و پیش‌بینی گسیختگی در مکانیک شکست به اطلاعات زیر نیاز است:
1.بار اعمال شده
2.تنش پسماند
3.شکلو اندازه قطعه
 مورد آزمایش
4.شکل، اندازه، محل قرارگیری و جهت‌گیری ترک
تمامی اطلاعات بالا همیشه در دسترس نخواهند بود. به همین دلیل، معمولاً از فرضیات محافظه‌کارانه برای انجام تحلیل‌ها کمک گرفته می‌شود. گاهی اوقات نیز تحلیل‌های مکانیک شکست پس از رخ دادن گسیختگی مورد استفاده قرار می‌گیرند. اگر شکست در عدم حضور بارهای اضافی رخ داده باشد، وجود ترک‌های بسیار بزرگ شناسایی نشده در حین بررسی‌های معمول یا چقرمگی پایین ماده به عنوان دلایل رخ دادن شکست در نظر گرفته می‌شوند.

Final Report on a Board of Investigation to Inquire into the Design and methods of Construction of Welded Steel Merchant Vessels, 1947