پلیمر

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی و مهندسی

پلیمر:

بَسپار یا بُلپار یا پلیمر (به انگلیسی: Polymer)، یک درشت‌مولکول است که از تعداد زیادی واحد تکرارشونده تشکیل شده‌است. هر دو پلیمر مصنوعی و طبیعی نقش های اساسی و همه گیر را در زندگی روزمره ایفا می کنند. واژهٔ بسپار فارسی است و از دو بخش بس (بسیار) و پار (پاره، قطعه) ساخته‌شده‌است. واژه «پلیمر» از دو بخش یونانی «polys» به معنای بسیار و «meros» به معنی قسمت، پاره یا قطعه گرفته شده‌است. Microstructure of part of a DNA ساختار دی‌ان‌ای biopolymer

Polymer 2D.png

گونه‌های بسپار

شمار واحدهای تکرارشونده در یک مولکول بزرگ درجه بسپارش یا درجه پلیمریزاسیون نامیده می‌شود. بسپارهایی که تنها از یک نوع واحد تکرار شونده ساخته‌شده‌اند، جوربسپار و آنهایی که از چند گونه واحد تکرارشونده تشکیل شده‌اند، هم بسپار نامیده می‌شوند. گاهی لفظ ترپلیمر نیز برای محصولات حاصل از بسپارش سه تک‌پار به کار می‌رود. در عین حال، در مورد محصولاتی که با بیش از سه تک‌پار بسپارش شده‌اند، لفظ ناجوربسپار رایج است.

بیشتر مواد اساسی همچون پروتئین، چوب، کتین، لاستیک خام (کائوچو) و رزین‌ها بسپار هستند. بسیاری از مواد مصنوعی همچون پلاستیک‌ها، الیاف مصنوعی (نایلون، ریون)، چسب‌ها، شیشه و چینی مواد پلیمری هستند.

دسته‌بندی پلیمر

بسپارها به دو دسته بسپارهای طبیعی و بسپارهای مصنوعی تقسیم می‌شوند. البته بسپارها را به روش‌های مختلف دیگری نیز دسته‌بندی نیز می‌کنند. دسته‌بندی زیر بر اساس ساختار بسپار انجام شده‌است.

بسپارها از نظر اثر پذیری در برابر حرارت به دو دسته گرمانرم‌ها (ترموپلاستیک‌ها) و گرماسختها(ترموست‌ها) تقسیم می‌شوند. گرمانرم‌ها، پلیمرهایی هستند که در اثر گرم کردن ذوب می‌شوند در حالی که گرماسخت‌ها، بسپارهایی هستند که در اثر گرما ذوب نمی‌شوند بلکه در دماهای بسیار بالا به صورت برگشت‌ناپذیری تجزیه می‌شوند. بسپارها دارای خواص ویسکو الاستیک هستند و منشأ این پدیده، در گرمانرم‌ها گره خوردگی زنجیره‌ها و در گرماسخت‌ها گره خوردگی زنجیره‌ها و اتصالات شبکه‌ای آن‌ها در هم است.

آلیاژ سازی پلیمر

مهم‌ترین دلایل اقتصادی آلیاژسازی بسپارها، عبارتند از:

  1. بکارگیری بهتر و بیشتر از بسپارهای مهندسی، به وسیلهٔ آمیزش آن‌ها با گونه‌های ارزان قیمت.
  2. تهیه مواد با خواص مورد نظر.
  3. دست‌یابی به آلیاژهایی با کارایی بالا با استفاده از بسپارهایی که اثرات هم‌افزایی (Synergistic) دارند.
  4. تنظیم ترکیب درصد اجزاﺀ آلیاژ با مشخصات مورد نیاز مصرف‌کننده.
  5. بازیافت پسماندهای پلاستیک‌های مصرفی و وارد کردن آن‌ها در آلیاژسازی.

نکتهٔ مهمی که وجود دارد این است که انتخاب اجزا آمیزه باید به گونه‌ای باشد که مزایای پلیمر اول پوشانندهٔ معایب پلیمر دوم باشد.

افزودنی‌های بسپار

افزودنی‌های بسپار یک نوع از افزودنی‌های شیمیایی بتن می‌باشند، این مواد برای تصحیح خواص فرآورده‌های بسپاری به کار می‌رود. این مواد عبارتند از:

  • نرم‌کننده‌ها: نرم‌کننده‌ها[۱۱] افزودنی‌هایی هستند که انعطاف‌پذیری ماده‌ای را که به آن افزوده می‌شود را افزایش می‌دهد. این مواد علاوه بر صنعت پلیمر در بتون و سیمان نیز کاربرد دارد. نرم‌کننده‌های پلاستیک‌ها معمولاً از دستهٔ فتالات‌ها هستند که انعطاف‌پذیری و دوام پلاستیک را افزایش می‌دهند. عملکرد این مواد به این صورت است که با قرار گرفتن بین مولکول‌های مواد پلیمری فضاهای خالی را افزایش داده و موجب پایین آمدن دمای ذوب کریستالی و در نتیجه نرم‌تر شدن پلیمر می‌شود.
  • پایدارکننده‌ها
  • رنگدانه‌ها: رنگدانه‌ها موادی هستند که برای رنگ کردن و دادن خاصیت رنگی به پلیمر استفاده می‌شود و شامل رنگدانه‌های آلی و معدنی می‌شود.
    • رنگدانه‌های معدنی:
      رنگدانه‌های غیرآلی، نمک‌های فلزی و اکسیدها هستند. این عوامل رنگزا می‌توانند یک لایه از یک جسم پلاستیکی را با رفتار قابل پیش‌بینی رنگی کنند. اکثر این عوامل رنگزا دارای ذراتی با ابعاد میانگین بین ۰/۲ تا ۱/۰ مسلام.

تولیدکنندگان، رنگ‌های مرغوب را با زدودن ذرات بالاتر از ۵ میکرون، تولید می‌کنند. رنگدانه‌های غیرآلی به جز چند استثناء، مواد خام ارزان قیمت هستند که. به خاطر دوام نسبتاً پایین این رنگ‌ها، این رنگدانه‌ها همیشه بهترین کیفیت را ندارند.

  • رنگدانه‌های آلی: رنگدانه‌های آلی، گسترهٔ وسیعی از لحاظ پیچیدگی ساختاری دارند؛ که ساختار این مواد می‌تواند به سادگی کربن سیاه یا به پیچیدگی ساختار چهارتایی رنگدانه‌های فتالوسیانین باشد. استفاده از رنگدانه‌های آلی در آلیاژها و آمیخته‌های پلیمری به سرعت در حال افزایش است که این افزایش نتیجه‌ای از دیدگاه کاهش مصرف فلزات سنگین است. به‌طور نمونه، دوام رنگدانه‌های آلی ۱۰–۲۰ بار بیشتر از رنگ‌های غیرآلی مورد مقایسه‌است و این به خاطر این است که رنگ‌های آلی ذرات کوچکتری نسبت به رنگ‌های غیرآلی دارند.

نانوذره

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی و مهندسی

نانوذره:

نانوذره (به انگلیسی: Nanoparticle)، ذره‌ای است که ابعاد آن در حدود ۱ تا ۱۰۰ نانومتر باشد. نانوذرات علاوه‌بر نوع فلزی، عایقها و نیمه هادی‌ها، نانوذرات ترکیبی نظیر ساختارهای هسته‌لایه را نیز در بر می‌گیرند. همچنین نانوکره‌ها، نانومیله‌ها، و نانوفنجان‌ها تنها اشکالی از نانو ذرات در نظر گرفته می‌شوند. نانوذرات در اندازه‌های پایین نانوخوشه به حساب می‌آیند. نانوبلورها و نقاط‌کوانتومی نیمه‌هادی نیز زیرمجموعه نانوذرات هستند.

روش‌های ساخت

برای تولید نانوذرات روش‌های بسیار متنوعی وجود دارد. این روش‌ها اساساً به سه گروه تقسیم می‌شوند که در ذیل به شرح هر یک می‌پردازیم:

چگالش از یک بخار: روش چگالش از یک بخار شامل تبخیر یک فلز جامد و سپس چگالش سریع آن برای تشکیل خوشه‌های نانومتری است که به صورت پودر ته‌نشین می‌شوند. مهم‌ترین مزیت این روش میزان کم آلودگی است. در نهایت اندازه ذره با تغییر پارامترهایی نظیر دما و محیط گاز و سرعت تبخیر کنترل می‌شود. روش تبخیر در خلاء بر روی مایعات روان (VERL) و روش سیم انفجاری جزء روش‌های چگالش از یک بخار محسوب می‌شود.

سنتز شیمیایی: استفاده از روش سنتز شیمیایی شامل رشد نانوذرات در یک محیط مایع حاوی انواع واکنشگرها است. روش سل ژل نمونه چنین روشی است، در روش‌های شیمیایی اندازه نهایی ذره را می‌توان با توقف فرایند هنگامی که اندازه مطلوب به دست آمد یا با انتخاب مواد شیمیایی تشکیل دهنده ذرات پایدار و توقف رشد در یک اندازه خاص کنترل نمود. این روش‌ها معمولاً کم هزینه و پر حجم هستند، اما آلودگی حاصل از مواد شیمیایی می‌تواند یک مشکل باشد.

فرایندهای حالت جامد: از روش فرایندهای جامد (آسیاب یا پودر کردن) می‌توان برای ایجاد نانوذرات استفاده نمود. خواص نانوذرات حاصل تحت تأثیر نوع ماده آسیاب کننده، زمان آسیاب و محیط اتمسفری آن قرار می‌گیرد. از این روش می‌توان برای تولید نانوذرات از موادی استفاده نمود که در دو روش قبلی به آسانی تولید نمی‌شوند

لیپوزم‌ها، درخت سان‌ها، نانو ذرات پلیمری، نانو ذرات پوشش داده شده با پلیمرها، نانو ذرات کیتوزان و لستین و نانو ذرات دارویی نمونه‌هایی از نانو ذراتی می‌باشند که از مسیر فناوری‌های نوین به دست آمده‌اند………..[۲]

تحقیق

محققان دانشگاه شهید رجایی و دانشگاه آزاد اسلامی واحد شهرری، نانوذرات اکسید روی را با استفاده از یک روش سبز و دوستدار محیط زیست در مقیاس آزمایشگاهی سنتز کرده‌اند. نانوذرات روی در تولیدلیزر، دیود و سلول خورشیدی کاربرد دارد.

پژوهشگران دانشگاه صنعتی اصفهان با همکاری محققان آلمانی، با استفاده از روش آزمایشگاهی سبزنانو ذرات آلومینا را با خلوص و کیفیت بالا تولید کردند.

نوآوران دانشگاه سمنان توانستند نانو کامپوزیت تقویت‌کننده خاک بستر را اختراع کنند، این نانو کامپوزیت جهت ساخت راه‌ها، پل‌ها و سایر ابنیه بر روی زمین‌های سست کاربرد دارد.

تعیین مشخصات

نانو ذرات با سه مشخصه اندازه نوع و غلظت حجمی مشخص می‌شوند که به‌طور مثال برای نانو روغن استفاده شده در ترانس غلظت حجمی ۰.۱ تا ۱ درصد در لیتر مقدار مناسبی است.تعیین مشخصات نانوذرات برای کنترل سنتز و کاربرد آن‌ها ضروری است. خواص این ترکیبات با استفاده از روش‌های گوناگونی نظیر: میکروسکوپ‌های الکترونی، AFM، طیف‌سنجی فوتوالکترون، Xray و FT-IR و همچنین روش‌های تعیین اندازه و سطح ویژه ذرات سنجیده می‌شود. نانوذرات در حال حاضر از طیف وسیعی از مواد ساخته می‌شوند، معمول‌ترین آن‌ها نانو ذرات سرامیکی، فلزی وپلیمری و نانو ذرات نیمه رسانا هستند.

نانو ذرات قابلیت سوسپانسیون شدن رادارند.

امروزه برای لایه نشانی نانو ذرات از لایه نشان چرخشی (اسپین کوتر [پیوند مرده])و لایه نشان غوطه وری استفاده می‌شود

نیتروژن

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی و مهندسی

نیتروژن:

یکی از عنصرهای جدول تناوبی عنصرها، مهم ترین عنصر تشکیل دهنده هوای کره زمین

با مازت اشتباه نشود.

نیتروژن یا ازت (به انگلیسی: Nitrogen) یکی از عنصرهای شیمیایی در جدول تناوبی است که نشان شیمیایی آن N و عدد اتمی آن ۷ است. نیتروژن معمولاً به صورت یک گاز، نافلز، دو اتمی بی اثر، بی‌رنگ، بی‌مزه و بی‌بو است که ۷۸٪ جو زمین را دربر گرفته و عنصر اصلی در بافت‌های زنده است. نیتروژن ترکیبات مهمی مانند آمونیاک، اسید نیتریک و سیانیدها را شکل می‌دهد.

ویژگی‌های کلی
ظاهرcolorless gas, liquid or جامد
جرم اتمی نسبی (Ar، استاندارد)(۱۴٫۰۰۶۴۳، ۱۴٫۰۰۷۲۸) conventional: ۱۴٫۰۰۷
نیتروژن در جدول تناوبی


N

P کربن ← نیتروژن → اکسیژن
عدد اتمی (Z)7
گروهگروه ۱۵ (گروه نیتروژن)
دورهدوره 2
بلوکبلوک-p
آرایش الکترونی[He] 2s2 2p3
لایه الکترونی2, 5
ویژگی‌های فیزیکی
فاز در STPگاز
نقطه ذوب63.153 (-210.00 °C, ​-346.00 °F)
نقطه جوش77.36 K ​(-195.79 °C, ​-320.3342 °F)
چگالی (در STP)1.251 g/L
در حالت مایع (در نقطه جوش)0.808 g/cm3
نقطه سه‌گانه63.1526 K, ​12.53 kPa
نقطه بحرانی126.19 K, 3.3978 MPa
حرارت همجوشی(N2) 0.72 kJ/mol
آنتالپی تبخیر(N2) 5.56 kJ/mol
ظرفیت حرارتی مولی(N2)
29.124 J/(mol·K)
فشار بخار فشار (Pa) ۱ ۱۰ ۱۰۰ ۱ K ۱۰ K ۱۰۰ K در دمای (K) 37 41 46 53 62 77
ویژگی‌های اتمی
عدد اکسایش−3, −2, −1, +1, +2, +3, +4, +5 (یک اکسید اسیدی قوی)
الکترونگاتیویمقیاس پائولینگ: 3.04
انرژی یونش1st: 1402.3 kJ/mol 2nd: 2856 kJ/mol 3rd: 4578.1 kJ/mol (بیشتر)
شعاع کووالانسیpm 71±1
شعاع واندروالسی155 pm
خط طیف نوری نیتروژن
دیگر ویژگی ها
ساختار بلوری​دستگاه بلوری شش‌گوشه
سرعت صوت(gas, 27 °C) 353 m/s
رسانندگی گرمایی25.83 × 10−3 W/(m·K)
رسانش مغناطیسیdiamagnetic
شماره ثبت سی‌ای‌اس7727-37-9
ایزوتوپ‌های نیتروژن
ایزوتوپ فراوانی نیمه‌عمر (t۱/۲) حالت فروپاشی محصول 13N syn 9.965 min ε 2.220 13C 14N 99.634% 14N ایزوتوپ پایدار است که 7 نوترون دارد 15N 0.366% 15N ایزوتوپ پایدار است که 8 نوترون دارد

نیتروژن درخشان با درجه خلوص بالا در شیشه کوچک

The effects of nitrogen on chlorophyll

ویژگیهای درخور نگرش

چرخه نیتروژن

نوشتار اصلی: چرخه نیتروژن

نیتروژن از گروه غیرفلزات بوده و دارای بار الکترون منفی ۳٫۰ می‌باشد. نیتروژن پنج الکترون در پوسته خود داشته و در نتیجه در اکثر ترکیبات سه‌ظرفیتی است. نیتروژن خالص یک گاز بی‌اثر و بی‌رنگ است و ۷۸٪ جو زمین را به خود اختصاص داده‌است. در ۶۳K منجمد شده و در ۷۷K به صورت مایع، به ماده سرمایشی معروف سرمازا (Cryogen) تبدیل می‌شود.

~به طور کلی چرخه نیتروژن به زبان ساده عبارت است از: نیتروژنِ هوا به هنگام رعد و برق به اکسید نیتروژن تبدیل شده و در باران حل شده و جذب خاک می شود؛ در خاک این ترکیبات، توسط باکتری ها به موادی تبدیل می شوند که بوسیله گیاهان جذب می شوند. حیوانات با خوردن گیاهان، نیتروژن را وارد بدن خود می کنند، با مردن و تجزیه اندام حیوانات، دوباره نیتروژن وارد هوا می شود.

کاربردها

مهم‌ترین کاربرد اقتصادی نیتروژن برای ساخت آمونیاک از طریق فرایند هابر (Haber) است. آمونیاک معمولاً برای تولید کود و مواد تقویتی و اسید نیتریک استفاده می‌شود. نیتروژن همچنین به‌عنوان پرکننده بی اثر، در مخزن‌های بزرگ برای نگهداری مایعات قابل انفجار، در هنگام ساخت قطعات الکترونیک مانند ترانزیستور، دیود و مدار یکپارچه و همچنین برای ساخت فلزات ضدزنگ استفاده می‌شود. نیتروژن همچنین به صورت ماده خنک‌کننده، برای هم منجمد کردن غذا و هم ترابری آن، نگهداری اجساد و یاخته‌های تناسلی (اسپرم و تخمک) و غده های جنسی (بیضه و تخمدان)، و در زیست‌شناسی برای نگهداری پایدار از نمونه‌های زیستی کاربرد دارد. نمک اسید نیتریک شامل ترکیبات مهمی مانند نیترات پتاسیوم و سدیم و نیترات آمونیوم است؛ که اولی برای تولید باروت و دومی برای تولید کود به کار می‌رود. ترکیبات نیترات شده مانند نیتروگلیسرین و تری نیترو تولوئن (تی‌ان‌تی) معمولاً منفجر شونده هستند.

اسید نیتریک به عنوان ماده اکسیدکننده در مایع سوخت موشک‌ها استفاده می‌شود. هیدرازین و مشتقات آن نیز در سوخت موشک‌ها بکار می‌روند. نیتروژن اغلب در سرمازاها (Cryogens)، به صورت مایع (معمولاً LN2) استفاده می‌شود. نیتروژن مایع با عمل تقطیر هوا به دست می‌آید. در فشار جو، نیتروژن در دمای -۱۹۵٫۸ درجه سانتیگراد (-۳۲۰٫۴ درجه فارنهایت) مایع می‌شود.

فراوانی

نیتروژن بیشترین عنصر جو کره زمین از نظر حجم است. (۷۸ درصد ) و برای اهداف صنعتی با عمل تقطیر هوای مایع بدست می‌آید. ترکیباتی که حاوی این عنصر هستند در فضای بیرونی نیز مشاهده شده‌اند. نیتروژن -۱۴ در اثر عمل همجوشی هسته‌ای در ستارگان، تولید می‌گردد. نیتروژن از ترکیبات عمده ضایعات حیوانی (مانند چلغوز یا کود) بوده و معمولاً به صورت اوره، اسید اوریک و ترکیباتی از محصولات نیتروژنی یافت می‌شود.

ترکیبات

اصلی‌ترین هیدرید نیتروژن، آمونیاک است (NH3)، البته هیدرازین (N2H4) نیز مشهور است. ترکیب آمونیاک ساده‌تر از آب بوده و در محلول،یون‌های آمونیوم (NH4+) را تشکیل می‌دهد. آمونیاک مایع در حقیقت کمی آمفیروتیک بوده و آمونیاک و یون‌های آمینه (NH2) را به‌وجود می‌آورد؛ که البته هر دو نمک آمیدها و نیترید شناخته شده‌اند، ولی در آب تجزیه می‌شوند. ترکیبات جانشین آمونیاک به تنهایی یا باهم، آمینها نامیده می‌شوند. زنجیره‌ها، حلقه‌ها و ساختارهای بزرگ‌تر هیدریدهای نیتروژنی نیز شناخته شده‌اند، ولی در واقع ناپایدار هستند.

گروه‌های دیگر آنیونهای نیتروژن، آزیدین‌ها (N3) هستند، که خطی بوده و نسبت به دی‌اکسید کربن ایزو الکتریک هستند. مولکول دیگر با ساختار مشابه، مونوکسید دی نیتروژنNO یا گاز خنده است، و یکی از اکسیدهای گوناگون بوده و برجسته تر از مونوکسید نیتروژن (NO) و دی‌اکسید نیتروژن (NO2) است، که هر دوی آن‌ها الکترون غیر زوج دارند؛ که دومی تمایلی را به دوپارشدن نشان داده و از اجزای تشکیل دهنده هوای آلوده‌است.

اکسیدهای استاندارد بیشتری مانند تری‌اکسید دی نیتروژن (N2O3) و پنتاکسید دی نیتروژن (N2O5) معمولاً تا حدی نا پایدار و قابل انفجار هستند. اسیدهای متناظر آن‌ها نیتروس (HNO2) و اسید نیتریک (HNO3) بوده با نمک‌های متناظر که نیتریتها و نیتراتها نامیده می‌شوند. اسید نیتریک یکی از چند اسیدی است که از هیدرونیوم قوی تر است.

نقش زیست‌شناختی

نیتروژن عنصر اصلی اسیدهای آمینه و اسیدهای هسته‌ای که نیتروژن را ماده‌ای حیاتی برای ادامه زندگی می‌کنند، است. لوبیا مانند اکثر گیاهانی که دانه‌های سبوسی دارند می‌تواند عمل بازیافت نیتروژن را به‌طور مستقیم از هوا انجام دهد، چراکه ریشه‌های آن‌ها دارای برآمدگی‌هایی، برای نگهداری میکروبهایی است که عمل تبدیل به آمونیاک را فرایندی به نام تثبیت نیتروژن انجام می‌دهد، می‌باشد. این گیاهان آمونیاک را به اکسیدهای نیتروژن و آمینو اسید تبدیل کرده و پروتئین می‌سازند.

ایزوتوپ‌ها

نیتروژن دو ایزوتوپ پایدار دارد: (N-14 , N-15). که مهم‌ترین آن دو N-14 (99.634%) است که در چرخه CNO در ستارگان تولید می‌شود. مابقی، ایزوتوپ N-15 است. یکی از ده ایزوتوپی که به صورت مصنوعی تولید می‌شوند دارای نیمه عمر نه دقیقه‌ای داشته و ایزوتوپ‌های دیگر نیمه عمر چند ثانیه یا کمتر دارند.

واکنش‌های زیست‌شناختی-واسطهای (مانند همانند سازی، جذب و ترکیب نیترات سازی) و … پویایی نیتروژن در خاک را به شدت کنترل می‌کنند. این ترکیبات معمولاً باعث عمل غنی سازی N-15 لایه زیرین و تخلیه محصول می‌شود. البته این فرایند سریع اغلب مقادیری از آمونیام و نیترات نیز دربردارد، زیرا آمونیوم به صورت ترجیحی به‌وسیله سایبان جو نیترات، نگهداری می‌شود. خاک نیتراتی نسبت به خاک آمونیومی، توسط ریشه درختان بهتر جذب و ترکیب می‌شود.

بوتانول

n-بوتانول (به انگلیسی: n-Butanol) یک ترکیب شیمیایی با شناسه پاب‌کم ۲۶۳ است. شکل ظاهری این ترکیب، مایع بی‌رنگ است.

n-Butanol
نام‌گذاری اتحادیه بین‌المللی شیمی محض و کاربردیButan-1-ol[۱]
دیگر نام‌هاButalcohol
Butanol
1-Butanol
Butyl alcohol
Butyl hydrate
Butylic alcohol
Butyralcohol
Butyric alcohol
Butyryl alcohol
Hydroxybutane
Propylcarbinol
شناساگرها
شماره ثبت سی‌ای‌اس71-36-3 
پاب‌کم263
کم‌اسپایدر258 
UNII8PJ61P6TS3 
شمارهٔ ئی‌سی200-751-6
شمارهٔ یواِن1120
دراگ‌بانکDB02145
KEGGD03200 
MeSH1-Butanol
ChEBICHEBI:28885 
ChEMBLCHEMBL14245 
شمارهٔ آرتی‌ئی‌سی‌اسEO1400000
مرجع بیلشتین969148
مرجع جی‌ملین25753
3DMetB00907
جی‌مول-تصاویر سه بعدیImage 1
SMILES CCCCO
InChI InChI=1S/C4H10O/c1-2-3-4-5/h5H,2-4H2,1H3 
Key: LRHPLDYGYMQRHN-UHFFFAOYSA-N InChI=1/C4H10O/c1-2-3-4-5/h5H,2-4H2,1H3
خصوصیات
فرمول مولکولیC4H10O
جرم مولی۷۴٫۱۲ g mol−1
شکل ظاهریColourless liquid
چگالی0.81 g cm-3
دمای ذوب−۹۰ درجه سلسیوس (−۱۳۰ درجه فارنهایت؛ ۱۸۳ کلوین)
دمای جوش‎118 °C, 391 K, 244 °F
انحلال‌پذیری در آب63.2 g L-1
log P0.839
ضریب شکست (nD)1.399 (20 °C)
گرانروی3 cP
گشتاور دوقطبی1.66 D
ترموشیمی
آنتروپی مولار
استاندارد So298
225.7 J K−1 mol−1
آنتالپی استاندارد
تشکیل ΔfHo298
−328(4) kJ mol-1
Std enthalpy of
combustion ΔcHo298
−2670(20) kJ mol-1
خطرات
MSDSICSC 0111
شاخص ئی‌یو603-004-00-6
طبقه‌بندی ئی‌یو Xn
کدهای ایمنیR۱۰, R۲۲, R37/38, R۴۱, R67
شماره‌های نگهداریS۲, S7/9, S۱۳, S26, S37/39, S۴۶
نقطه اشتعال35 °C
دمای خودآتشگیری343 °C
محدودیت‌های انفجار1.4–11.2%
ترکیبات مرتبط
ترکیبات مرتبطبوتانتیول
ان-بوتیل‌آمین
پنتان
به استثنای جایی که اشاره شده‌است در غیر این صورت، داده‌ها برای مواد به وضعیت استانداردشان داده شده‌اند (در 25 °C (۷۷ °F)، ۱۰۰ kPa)

سرب

فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی و مهندسی

سرب:

این مقاله دربارهٔ فلز سرب است. برای فیلم، سرب (فیلم) را ببینید.

سرب از عنصرهای شیمیایی واسطه در جدول تناوبی با نماد شیمیایی Pb (به لاتین: Plumbum) است. سرب همچنین در رده فلزها قرار دارد. این فلز تشعشعات هسته‌ای را عبور نمی‌دهد به عنوان نمونه لایه ۹ میلی متری از سرب توان پرتو گاما را نصف میکند و برای جلوگیری از عبور این پرتو دیواره سربی با ضخامت ۱۰ سانتی متر کافی است . سرب در طبیعت به شکل کانی به نام گالن (سیستم تبلور کوبیک یا مکعبی) یافت می‌گردد.

ویژگی‌های کلی
تلفظ‎/ˈlɛd/‎ ​(LED)
ظاهرMetallic gray
جرم اتمی نسبی (Ar، استاندارد)۲۰۷٫۲(۱)[۱]
سرب در جدول تناوبی
Sn

Pb

Fl تالیم ← سرب → بیسموت
عدد اتمی (Z)82
گروهگروه ۱۴ (گروه کربن)
دورهدوره 6
بلوکبلوک-p
آرایش الکترونی[Xe] 4f14 5d10 6s2 6p2
لایه الکترونی2, 8, 18, 32, 18, 4
ویژگی‌های فیزیکی
فاز در STPجامد
نقطه ذوب600.61K (327.46 °C, ​621.43 °F)
نقطه جوش2022 K ​(1749 °C, ​3180 °F)
چگالی (near r.t.)11.34 g/cm3
در حالت مایع (at m.p.)10.66 g/cm3
حرارت همجوشی4.77 kJ/mol
آنتالپی تبخیر179.5 kJ/mol
ظرفیت حرارتی مولی26.650 J/(mol·K)
فشار بخار فشار (Pa) ۱ ۱۰ ۱۰۰ ۱ K ۱۰ K ۱۰۰ K در دمای (K) 978 1088 1229 1412 1660 2027
ویژگی‌های اتمی
عدد اکسایش−4, −2, −1, +1, +2, +3, +4 (an amphoteric اکسید)
الکترونگاتیویمقیاس پائولینگ: 2.33
انرژی یونش1st: 715.6 kJ/mol 2nd: 1450.5 kJ/mol 3rd: 3081.5 kJ/mol
شعاع اتمیempirical: 175 pm
شعاع کووالانسیpm 146±5
شعاع واندروالسی202 pm
خط طیف نوری سرب
دیگر ویژگی ها
ساختار بلوری​(fcc)
انبساط حرارتی28.9 µm/(m·K) (at 25 °C)
رسانندگی گرمایی35.3 W/(m·K)
رسانش الکتریکی208 n Ω·m (at 20 °C)
رسانش مغناطیسیdiamagnetic
مدول یانگ16 GPa
مدول برشی5.6 GPa
مدول حجمی46 GPa
نسبت پواسون0.44
سختی موس1.5
سختی برینل38.3 MPa
شماره ثبت سی‌ای‌اس7439-92-1
ایزوتوپ‌های سرب
ایزوتوپ فراوانی نیمه‌عمر (t۱/۲) حالت فروپاشی محصول 204Pb 1.4% >1.4×1017 Alpha 2.186 200Hg 205Pb sy 1.53×107 Epsilon 0.051 205Tl 206Pb 24.1% 206Pb ایزوتوپ پایدار است که 124 نوترون دارد 207Pb 22.1% 207Pb ایزوتوپ پایدار است که 125 نوترون دارد 208Pb 52.4% 208Pb ایزوتوپ پایدار است که 126 نوترون دارد 210Pb trace 22.3 Alpha 3.792 206Hg Beta 0.064 210Bi
نمایشبحثویرایش | منابع

سرب

سرب عنصر شیمیایی است که در جدول تناوبی با نشان Pb و عدد اتمی ۸۲ وجود دارد. سرب عنصری سنگین، سمی و چکش خوار است که دارای رنگ خاکستری کدری می‌باشد. هنگامیکه تازه تراشیده شده سفید مایل به آبی است اما در معرض هوا به رنگ خاکستری تیره تبدیل می‌شود. از سرب در سازه‌های ساختمانی، خازنهای اسید سرب، ساچمه و گلوله استفاده شده و نیز بخشی از آلیاژهای لحیم، پیوتر و آلیاژهای گدازپذیر می‌باشد. سرب سنگین‌ترین عنصر پایدار است.

سرب فلزی است براق، انعطاف‌پذیر، بسیار نرم، شدیداً چکش خوار و به رنگ سفید مایل به آبی که از خاصیت رسانای الکتریکی پایینی برخوردار می‌باشد. این فلز حقیقی به شدت در برابر پوسیدگی مقاومت می‌کند و به همین علت از آن برای نگهداری مایعات فرسایشگر (مثل اسید سولفوریک) استفاده می‌شود. با افزودن مقادیر خیلی کمی آنتیموان یا فلزات دیگر به سرب می‌توان آن را سخت نمود. [نیازمند منبع]

کاربردها

کاربردهای اولیه سرب عبارت بودند از:سازه‌های ساختمانی، رنگدانه‌های مورد استفاده در لعاب سرامیک و لوله‌های انتقال آب. کاخ‌ها و کلیساهای بزرگ اروپا دروسایل تزئینی، سقفها، لوله‌ها و پنجره‌ها یشان دارای مقادیر قابل توجهی سرب هستند. این فلز (در حالت عنصری) پس از آهن، آلومینیم، مس و روی بیشترین کاربرد را دارد. موارد استفاده معمولی سرب به شرح زیر است: در باتری‌های اسید سرب، در اجزای الکترونیکی، روکش کابل، مهمات، در شیشه CTRها، سرامیک، شیشه‌های سربدار، لوله‌های سربی (استفاده از اتصالات سربی در لوله‌های آب آشامیدنی در دهه ۹۰ در آمریکا غیرقانونی شد و امروزه کاربرد آنچنانی ندارند) در رنگ‌ها (از سال ۱۹۷۸ در آمریکا و به تدریج از دهه ۶۰ تا دهه ۸۰ در انگلستان ممنوع شد اگرچه رنگ سطوح قدیمی می‌توانست تا ۵۰٪ وزن از سرب باشد) آلیاژها، پیوتر، اتصالات و مواد پرکننده . همچنین در بام‌ها به‌عنوان درزگیر برای محافظت اتصالات در برابر باران مورد استفاده قرار می‌گیرد. در بنزین به‌صورت تترا اتیل و تترا متیل سرب برای کاهش صدای موتور کاربرد داشت. البته فروش بنزین سربدار در آمریکا از سال ۱۹۸۶ و در اتحادیه اروپا از سال ۱۹۹۹ ممنوع شد.

نشان Pb برای سرب خلاصه نام لاتین آن plumbum است. سرب یک ابررسانا با دمای بحرانی K=۲۰/۷ c T (۹۵/۲۶۵ – درجه سانتیگراد) می‌باشد.

به علت فراوانی سرب (هنوز هم اینگونه‌است)، تهیه آسان، کار کردن آسان با آن، انعطاف‌پذیری و چکش خواری بالا و پالایش راحت، حداقل از ۷۰۰۰ سال پیش مورد استفاده بشر می‌باشد. در کتاب خروج (بخشی از انجیل) به این عنصر اشاره شده‌است. کیمیاگران می‌پنداشتند سرب قدیمی‌ترین فلز بوده و به سیاره زحل مربوط می‌شود. لوله‌های سربی که نشانه‌های امپراتوری روم را حمل می‌کردند هنوز هم بکار می‌روند.

در اواسط دهه ۸۰ تغییر مهمی در الگوهای پایان استفاده از سرب به وجود آمده بود. بیشتر این تغییر ناشی از پیروی مصرف کنندگان سرب آمریکا از قوانین زیست‌محیطی بود که به طرز قابل ملاحظه‌ای استفاده از سرب را در محصولات بجز باتری از جمله بنزین، رنگ، اتصالات و سیستم‌های آبی کاهش داده یا حتی حذف کرد.

جداسازی

سرب محلی در طبیعت یافت می‌شود اما کمیاب است. امروزه معمولاً سرب در کانیهایی همراه با روی، نقره و (بیشتر) مس یافت می‌شود و به همراه این مواد جدا می‌گردد. ماده معدنی اصلی سرب گالن(PbS) است که حاوی ۶/۸۶٪ سرب می‌باشد. سایر کانی‌های مختلف و معمول آن سروسیت (PbCO3) و انگلسیت (PbSO4) می‌باشند. اما بیش از نیمی از سربی که امروزه مورد استفاده قرار می‌گیرد بازیافتی می‌باشد. سنگ معدن به‌وسیله مته یا انفجار جداشده سپس آن را خرد کرده و روی زمین قرار می‌دهند. بعد از آن سنگ معدن تحت تأثیر فرایندی قرار می‌گیرد که در قرن نوزدهم در Broken Hill استرالیا به وجود آمد. یک فرایند شناورسازی، سرب و دیگر مواد معدنی را از پس مانده‌های سنگ جدا می‌کند تا با عبور سنگ معدن، آب و مواد شیمیایی خاص از تعدادی مخزن که درون آن‌ها دوغاب همیشه مخلوط می‌شود، عصاره‌ای به وجود آید. درون این مخزن‌ها هوا جریان یافته و سولفید سرب به حباب‌ها می‌چسبد و به صورت کف بالا آمده که می‌توان آن را جدا نمود. این کف (که تقریباً دارای ۵۰٪ سرب است) خشک شده سپس قبل از پالایش به منظور تولید سرب ۹۷٪ سینتر می‌شوند. بعد ازآن سرب را طی مراحل مختلف سرد کرده تا ناخالصیهای(ریم) سبک تر بالا آمده و آن‌ها را جدا می‌کنند. سرب مذاب با گداختن بیشتر به‌وسیله عبور هوا از روی آن و تشکیل لایه‌ای از تفاله فلز که حاوی تمامی ناخالصی‌های باقی‌مانده می‌باشد تصفیه شده و سرب خالص ۹/۹۹٪ بدست می‌آید.

ایزوتوپها

سرب به‌طور طبیعی دارای چهار ایزوتوپ پایدار است: Pb-۲۰۴(۱٫۴٪)-Pb-۲۰۶(۲۴٫۱٪)-Pb-۲۰۷(۲۲٫۱٪)-Pb-۲۰۸(۵۲٫۴٪). سرب ۲۰۶-۲۰۷ و۲۰۸ همگی پرتوزا بوده و محصولات پایانی زنجیره فروپاشی پیچیده‌ای هستند که به ترتیب درU-۲۳۸،U-۲۳۵ وTh-۲۳۲ رخ می‌دهند. نیمه عمرهای مساوی این آرایش‌های فرسایشی بسیار متغیر است به ترتیب: ۹ ۱۰،۰۴/۷ X ۸ ۱۰X ۴۷/۴ و۴/۱ X ۱۰ ۱۰سال. هر کدام از آن‌ها به نسبت Pb-۲۰۴ تنها ایزوتوپ پایدار غیر پرتوزا گزارش می‌شود. ترتیب نسبت‌های ایزوتوپی برای بیشتر مواد معدنی طبیعی ۰/۳۰ –۰۰/۱۴ برای Pb-۲۰۶/Pb-۲۰۴، ۱۵-۱۷ برای Pb-۲۰۷/Pb-۲۰۴ و ۵۰-۳۵ برای Pb-۲۰۸/Pb-۲۰۴ می‌باشد اگرچه نمونه‌های بسیار زیادی خارج از این حوزه در نوشته‌ها به چشم می‌خورد.

هشدارها

سرب فلز سمی است که به پیوندهای عصبی آسیب رسانده (بخصوص در بچه‌ها) و موجب بیماری‌های خونی و مغزی می‌شود. تماس طولانی با این فلز یا نمکهای آن (مخصوصاً نمک‌های محلول یا اکسید غلیظ آن PbO2) می‌تواند باعث بیماری‌های کلیه و دردهای شکمی شود.

سرب

سرب فلز سمی است که به پیوندهای عصبی آسیب رسانده (بخصوص در بچه‌ها) و موجب بیماری‌های خونی و مغزی می‌شود.

میزان حداقل ۵ میکرو گرم سرب در هر دسی لیتر خون کودکان سبب اثرات سوء بر بهره هوشی خواهد شد و این اثرات با افزایش تماس با سرب و افزایش غلظت خونی سرب، افزایش خواهد یافت. تماس با سرب در کودکان می‌تواند منجر به اختلال تمرکز و پرخاشگری شود.

علائم مسمومیت با سرب

دل درد و قولنج شدید شکمی، یبوست، درد مفاصل زانوها، مچ و آرنج، کمر، شانه، سردرد، خستگی، بی قراری و بی اشتهایی

مسمومیت حاد: بی اشتهایی، تحریک پذیری، استفراغ، انسفالوپاتی حاد و آتاکسی، استفراغ مقاوم، لتارژی، تشنج و اغما

مسمومیت مزمن: تورم لثه با خطوط آبی روی لثه‌ها، احساس طعم فلزی در دهان، ترومبوز عروق مغزی و انسفالوپاتی ناشی از آن، کاهش قدرت یادگیری و حافظه، هوش پایین، اختلالات رفتاری، لرزش، قولنج روده‌ای، درد عضلانی، افزایش فشار خون، کم خونی، کاهش تعداد اسپرم و ناباروری.

هر سال تماس با سرب در کودکان منجر به افزایش تقریبی ۶۰۰۰۰۰ مورد ناتوانی مغزی جدید در جهان می‌گردد. در منازل قدیمی که چهل سال یا بیشتر از ساخت آن می‌گذرد، رنگ‌های استفاده شده و پوسته شده در دیوارها و چارچوب‌ها و لوله‌های آب، اصلی‌ترین منبع مسمومیت با سرب می‌باشد. کودکان زیر ۵ سال و زنان باردار دو گروه اصلی در معرض خطر در اثر تماس با سرب هستند. از سوختن هر لیتر بنزین سرب دار ۰٫۳۲ گرم سرب وارد هوا می‌شود، که ۱۰٪ آن روی سطح خیابان‌ها ریخته می‌شود و به‌طور متوسط یک اتومبیل در حدود ۱ کیلوگرم در سال از خود سرب خارج می‌کند. غلظت سرب در خون ساکنین شهرها بیشتر از حاشیه شهرها و بیشتر از روستاها است. کودکان نسبت به صدمات ناشی از سمیت عصبی مسمومیت با سرب بسیار حساس هستند و گاهی اوقات صدمات عصبی ناشی از سرب در کودکان برگشت‌ناپذیر است. به منظور سنجش سرب در خون افراد شاغل در صنعت که با سرب تماس دارند، آزمایش خون باید به‌طور مرتب انجام شود. تماس با سرب تقریباً عامل ۰٫۶٪ از بیماری‌هایی است که در کل جهان و خصوصاً در کشورهای در حال توسعه گزارش می‌شود. در سال‌های اخیر موارد متعددی از مرگ معتادانی که از تریاک تقلیب شده با سرب استفاده نموده‌اند به دلیل مسمومیت با سرب مشاهده شده‌است. تماس با مقادیر بالای سرب در زنان باردار می‌تواند منجر به سقط جنین، مرده زایی، زایمان زودرس و تولد نوزاد کم وزن و حتی ناقص شود.

موارد مهم استفاده از سرب کجاست؟

ساخت لوله و مخازن آب، تهیه پوشش سقف‌ها، حلبی، مفتول، روکش کابل برق رسانی، مهمات و اسلحه سازی، شیشه سازی، پلاستیک سازی، باتری سازی، لاستیک سازی، آلیاژهای فلزی، رنگ سازی، کبریت سازی، صنایع شیمیایی، اتاقک سربی، منابع تبخیر، آفت کش‌ها، سوخت اتومبیل و حروف چاپ، اتصالات و مواد پرکننده دندان..

منابع سرب

منابع طبیعی: سنگها، خاک، آب، هوا و گیاهان

منابع غیرطبیعی: دودکش‌ها، فاضلاب کارخانجات صنعتی، اگزوز اتومبیل، بنزین سرب دار

منابع شغلی: کار در باتری‌سازی، جوشکاری، لحیم کاری، تراشکاری، لوله بری، ریخته گری، کوزه‌گری، رنگ سازی، نقاشی، جواهر سازی، صنایع نظامی، چاپخانه، پمپ بنزین

منابع غیر شغلی: استفاده از ظروف سربی، شراب خانگی، داروهای گیاهی حاوی سرب، مواد آرایشی حاوی سرب، استفاده از ظروف شیشه‌ای کریستال حاوی سرب در مصارف روزمره خانگی، ظروف سرامیک با لعاب سربی (لعاب آبی رنگ)، استعمال سیگار

غذای آماده داخل قوطی، نوشیدنی سرد در بطری شیشه‌ای، انتقال سرب از طریق شیر مادر، آب و هوا و خاک آلوده به سرب، به دهان بردن رشته‌های پلاستیکی، دست و اجسام مختلف

کودکان ۴ تا ۵ برابر بیشتر از بزرگسالان، سرب محیط را جذب می‌کنند. به پنج دلیل عوارض تماس با سرب در کودکان بیش از بزرگسالان است:

۱- میزان دریافت سرب بر حسب واحد وزن بدن در کودکان بیشتر است.

۲- گرد و غبار بیشتری توسط کودکان بلعیده می‌شود

۳- میزان جذب سرب از دستگاه گوارش کودکان بیشتر است.

۴- سد خونی– مغزی کودکان هنوز تکامل پیدا نکرده‌است.

۵-اثرات سیستم عصبی در کودکان با مقادیر کمتری نسبت به بزرگسالان بروز می‌نماید

اصلی‌ترین عوارض سوء سرب در تکامل سیستم عصبی کودکان و بهره هوشی کودک بروز می‌نماید

کربن مونوکسید

کربن مونوکسید:

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی مهندسی

کربن مونوکسید (به انگلیسی: Carbon monoxide)، (با فرمول شیمیایی CO)،گازی است که بر اثر سوختن ناقص کربن به وجود می‌آید. این گاز بسیار سمی است اما رنگ و بوی خاصی ندارد. به همین دلیل کربن مونوکسید قاتل نامرئی نامیده می‌شود. میل ترکیبی کربن مونوکسید با هموگلوبین خون حدود ۲۰۰ برابر بیشتر از میل ترکیب گاز اکسیژن است. در خون انسان حدود ۵ درصد کربن مونوکسید وجود دارد اما اگر این مقدار به ۲۰ درصد برسد باعث مرگ خواهد شد.

کربن مونوکسید
Preferred IUPAC nameCarbon monoxide
دیگر نام‌هاCarbon monooxide
Carbonous oxide
Carbon(II) oxide
Carbonyl
شناساگرها
شماره ثبت سی‌ای‌اس۶۳۰-۰۸-۰ 
پاب‌کم۲۸۱ 
کم‌اسپایدر۲۷۵ 
UNII7U1EE4V452 
شمارهٔ ئی‌سی211-128-3
شمارهٔ یواِن1016
KEGGD09706 
MeSHCarbon+monoxide
ChEBICHEBI:17245 
شمارهٔ آرتی‌ئی‌سی‌اسFG3500000
مرجع بیلشتین3587264
مرجع جی‌ملین421
جی‌مول-تصاویر سه بعدیImage 1
SMILES [C-]#[O+]
InChI InChI=1S/CO/c1-۲ 
Key: UGFAIRIUMAVXCW-UHFFFAOYSA-N InChI=1/CO/c1-۲
Key: UGFAIRIUMAVXCW-UHFFFAOYAT
خصوصیات
فرمول مولکولیCO
جرم مولی28.010 g/mol
شکل ظاهریcolourless gas
بویodorless
چگالی789 kg/m3 liquid
1.250 kg/m3 at 0 °C 1 atm
1.145 kg/m3 at 25 °C 1 atm
دمای ذوب−۲۰۵٫۰۲ درجه سلسیوس (−۳۳۷٫۰۴ درجه فارنهایت؛ ۶۸٫۱۳ کلوین)
دمای جوش‎−191.5 °C, 82 K, -313 °F
انحلال‌پذیری در آب27.6 mg/1 L (25 °C)
انحلال‌پذیریsoluble in کلروفرم، استیک اسید، اتیل استات، اتانول، هیدروکسید آمونیوم، بنزن
ضریب شکست (nD)1.0003364
گشتاور دوقطبی0.122
ترموشیمی
آنتروپی مولار
استاندارد So298
198 J·mol−1·K−1
آنتالپی استاندارد
تشکیل ΔfHo298
−110.5 kJ·mol−1
خطرات
MSDSICSC 0023
شاخص ئی‌یو۰۰۶-۰۰۱-۰۰-۲
طبقه‌بندی ئی‌یوHighly flammable (F+)
Very toxic (T+)
کدهای ایمنیR۶۱ R۱۲ R۲۶ R48/23
شماره‌های نگهداریS53 S45
لوزی آتشNFPA 704 four-colored diamond
نقطه اشتعال−191 درجه سلسیوس (82.1 کلوین؛ −311.8 درجه فارنهایت)
دمای خودآتشگیری609 درجه سلسیوس (882 کلوین؛ 1128 درجه فارنهایت)
ترکیبات مرتبط
مرتبط با carbon oxidesکربن دی‌اکسید
کربن سابوکسید
Oxocarbon
به استثنای جایی که اشاره شده‌است در غیر این صورت، داده‌ها برای مواد به وضعیت استانداردشان داده شده‌اند (در 25 °C (۷۷ °F)، ۱۰۰ kPa)
 ✔ (بررسی) (چیست: ✔/؟)
Infobox references

تأثیر کربن مونوکسید بر انسان

۱۱۲/۸ پیکومتر فاصلهٔ میان کربن و اکسیژن است.

وقتی کربن مونوکسید وارد سیستم تنفسی شخصی شود بلافاصله با گلبول‌های قرمز شخص وارد واکنش شده و باعث می‌شود که اکسیژن کمتری به اعضای بدن برسد که اولین عارضه این مسئله در ابتدا سوزش چشم‌ها و پس از سپری شدن زمانی بین ۱ الی ۲ ساعت بسته به غلظت گاز کربن مونواکسید موجود در مکان فرد احساس خواب آلودگی و خستگی مفرط می‌کند. در این حالت اعضای بدن گِزگِز کرده و اگر بدن شخص حساس باشد دچار خونریزی بینی می‌شود. اگر شخص سعی کند سرپا بایستد دچار سرگیجه به همراه حالت تهوع شده و چشم‌ها در این حالت اغلب سیاهی می‌رود. در ادامه ممکن است شخص دچار بیهوشی شود. البته روند تمام این عوامل بستگی دارد به شرایط فیزیکی بدن فرد و شرایط محل سکون و البته عواملی از جمله شرایط زندگی فرد مورد نظر از جمله سیگاری بودن محیط کاری و … که باعث تغییر در عملکرد ریه‌ها و سایر نقاط بدن بستگی دارد اما باز هم نتایج و روند مسمومیت در افراد مختلف با تمام شرایط بالا باز هم متغیر است و حتمی نیست. احتیاط را همیشه به خاطر داشته باشید. بعضاً دیده و شنیده‌هایی حاکی از اقدام عمدی افراد در معرض خطر مسمومیت ثابت کرده که دلایلی از جمله خود کشی با این گاز به ثبت رسیده پس اگر فرزند برادر خواهر یا هر فردی که دلایل یا شرایط نابهنجاری را تجربه کرده‌اند در گروه مسمومیت یا مرگ ناشی از استشمام این گاز قرار دارند. این افراد را تنها رها نکنید و سرکشی و مراقبت را فراموش نکنید. فرتور شبیه‌سازی شدهٔ سه‌بُعدی.

یکی از نشانه‌های مسمومیت با کربن مونوکسید این است که وقتی شخص محیط خود را تغییر می‌دهد بهبود یافته و در قرار گرفتن مجدد در محیط دچار حالات قبلی می‌گردد. اگر غلظت کربن مونوکسید در خون بیشتر از ۳۰ درصد شود ضربان قلب شخص نیز افزایش می‌یابد. در غلظت‌های بیش از ۴۰ درصد اختلالت حرکتی، سرگیجه، کاهش حافظه و ناتوانی در حرکت اندام‌ها می‌شود.

تمامی وسایل و دستگاه‌هایی که وظیفه سوزاندن چیزی را به عهده دارند (مانند یک بخاری گازی یا نفتی، یک آب‌گرم‌کن یا حتی موتور یک خودرو) تا حدودی مونواکسیدکربن تولید می‌کنند، میزان این تولید به شرایط احتراق (سوختن) بستگی دارد؛ هرچه میزان اکسیژن در هنگام سوختن کمتر باشد بخش بیشتری از کربن‌ها دچار ناقص سوزی می‌شوند و به جای دی‌اکسید کربن (CO۲) مونواکسیدکربن (CO) تولید می‌کنند.

افرادی که در یک فضای سربسته در معرض استنشاق این گاز قرار می‌گیرند ابتدا احساس کرختی و خواب آلودگی می‌کنند و در صورتی که هرچه سریعتر مکان را ترک نکنند یا هوای تازه تنفس نکنند دچار بیهوشی و در نهایت خفگی می‌شوند.

برای دوری از خطرات همین گاز است که مدام توصیه می‌شود برای بخاری‌های گازی منازل حتماً از دودکش‌های H استفاده شود.

کربن مونوکسید از هوا سبکتر است و در قسمت‌های فوقانی محل‌های سرپوشیده بیشتر تجمع می‌کند. در کربن مونوکسید یک پیوند سه‌گانه کربن را به اکسیژن متصل می‌نماید که طول آن حدود ۱۱۲/۸ پیکومتر است.

پادزهر سم مونوکسید کربن

محققان در آزمایشگاه با استفاده از نوروگلوبین پادزهری برای مقابله با این سم ساختند. نوروگلوبین پروتئینی که معمولاً در مغز و شبکیه چشم یافت می‌شود. این پروتئین به وسیله اتصال اکسیژن و نیتریک اکسید از سلول‌ها در برابر آسیب‌ها دفاع می‌کند. این آزمایش روی موش‌ها با موفقیت اجرا شد. در این مطالعه که روی موش شد، دسته‌ای از نوروگلوبین‌ها تغییر یافته‌ای که اتصال با CO آن‌ها ۵۰۰ بار قوی‌تر از اتصالات هموگلوبین بود را استفاده کردند. مولکول‌های CO-laden از طریق کلیه‌ها دفع می‌شدند. به گزارش این گروه، در طی ۵ دقیقه که موش در معرض این سم کشنده بود، نوروگلوبین تا ۸۷ درصد موجب نجات موش شد. با این حال، مسمویت مونوکسید کربن یک سری مسیرهای ایمنولوژیکی را فعال می‌کند که موجب آسیب‌های شدید به سیستم‌های قلب و اعصاب می‌شود

هیدروکلریک اسید

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی و مهندسی

هیدروکلریک اسید:

هیدروکلریک اسید یک محلول شفاف، بی‌رنگ و با بوی بسیار تند از هیدروژن کلرید (HCl) در آب است. یک اسید معدنی بسیار خورنده و قوی با استفاده‌های صنعتی زیاد است. هیدروکلریک اسید به‌طور طبیعی در اسید معده یافت می‌شود. پی‌اچ (pH) این اسید بین ۰ تا ۲ می‌باشد.

اسید هیدروکلریدریک (PH1)
نام‌گذاری آیوپاکHydrochloric acid
دیگر نام‌هاMuriatic acid Spirit(s) of Salt
شناساگرها
شماره ثبت سی‌ای‌اس۷۶۴۷–۰۱–۰
شمارهٔ آرتی‌ئی‌سی‌اسMW4025000
خصوصیات
فرمول مولکولیHCl in آب (H2O)
جرم مولی36.46 g/mol (HCl)
شکل ظاهریشفّاف و بی‌رنگ تا زرد ِ روشن
liquid
چگالی1.18g/cm3
دمای ذوب−27.32 °C (247 K)
38% solution.
دمای جوش‎110 °C (383 K)
20.2% محلول;
48 °C (321 K)
38% محلول.
انحلال‌پذیری در آبامتزاج‌پذیر.
اسیدی (pKa)−8.0
گرانروی1.9 mPa·s at 25 °C
31.5% محلول
خطرات
MSDSExternal MSDS
طبقه‌بندی ئی‌یو C
کدهای ایمنیR۳۵, R۳۷
شماره‌های نگهداریS26, S۳۶, S45
خطرات اصلیCorrosive
لوزی آتش30 1COR
نقطه اشتعالNon-flammable.
ترکیبات مرتبط
دیگر آنیون‌هاF- Br-I-
مرتبط با اسیدهیدروبرومیک اسید
هیدروفلوئوریک اسید
هیدروژن یدید
سولفوریک اسید
به استثنای جایی که اشاره شده‌است در غیر این صورت، داده‌ها برای مواد به وضعیت استانداردشان داده شده‌اند (در 25 °C (۷۷ °F)، ۱۰۰ kPa)
Infobox references

هیدروکلریک اسید از قدیم به نام‌های اسیدم سالیس، موریاتیک اسید و جوهر نمک معروف بوده و از ویتریول (سولفوریک اسید) و نمک طعام به دست آمد. هیدروکلریک اسید آزاد ابتدا در قرن شانزدهم توسط آندریاس لیباویوس رسماً معرفی شد. بعدتر، توسط شیمیدان‌هایی مثل ژوهان رودولف گلابر، جوزف پریستلی و همفری دیوی در تحقیقات علمی شان مورد استفاده قرار گرفت.

با آغاز تولید گسترده در انقلاب صنعتی، هیدروکلریک اسید در صنایع شیمیایی به عنوان یک واکنش گر ناب در تولید مقیاس بزرگ وینیل کلرید برای پلاستیک وی.وی. سی، و MDI/TDI برای پُلی اُورِتان مورد استفاده قرار گرفت. کاربری‌های زیادتری هم در مقیاس کوچک دارد که شامل خانه‌داری، ساخت ژلاتین و دیگر افزودنی‌های غذایی، رسوب‌زدایی و چرم سازی می‌باشد. حدود ۲۰ میلیون تن از هیدروکلریک اسید سالانه در جهان تولید می‌شود.

همچنین گفته می‌شود جابر بن حیان این اسید را کشف کرده‌است. از این اسید برای جرم‌گیری از سطوح مختلف استفاده می‌شود. هیدروکلریک اسید در معده نیز وجود دارد و به هضم غذا کمک می‌کند. تنفس بخار هیدروکلریک اسید خطرناک است و به دستگاه تنفسی آسیب می‌رساند و اگر قطره‌ای از آن بر روی پوست بدن بچکد تولید تاول و حتی جراحت‌های عمیق می‌کند و در چنین مواردی باید بلافاصله با محلول قلیایی رقیق مانند محلول سودا یا جوش شیرین اثر اسید را خنثی کرد. گفته شده که جابر بن حیان هیدروکلریک اسید و اسیدهای دیگری مانند نیتریک اسید، سیتریک اسید (جوهر لیمو) و استیک اسید (جوهر سرکه) را می‌شناخته و ویژگی‌های آن‌ها را کشف کرده‌است.

وجه تسمیه

هیدروکلریک اسید برای کیمیاگران اروپایی با عنوان جوهر نمک یا اسیدم سالیس (نمک اسید) شناخته شده بود. هر دو نام هنوز هم رایج هستند به خصوص در زبان‌های غیر انگلیسی مثل زبان آلمانی: Salzsäure، زبان هلندی: Zoutzuur، زبان سامی شمالی: Saltsyra و زبان لهستانی: kwas solny. HCl گازی هوای اسید دریایی نامیده می‌شد. نام قدیمی (قبل از نام قاعده دار) موریاتیک اسید نیز ریشهٔ یکسانی دارد و بعضی اوقات به کار می‌رود (موریاتیک یعنی “مربوط به آب نمک یا نمک”).[۱][۲] نام «هیدروکلریک اسید» توسط شیمیدان فرانسوی ژوزف لویی گیلوساک در ۱۸۱۴ ابداع شد.[۳]

تاریخچه

تیزاب سلطانی، مخلوطی از هیدروکلریک اسید و نیتریک اسید، که با حل شدن نشادر در نیتریک اسید تهیه می‌شود، توسط سئودو گبر (جابر بن حیان بدلی)، شیمیدان اروپایی قرن ۱۳ تشریح شد. دیگر مراجع اذعان دارند که اولین اشاره به تیزاب سلطانی در دست خط‌های موجود امپراتوری روم شرقی با تاریخ اواخر قرن سیزدهم یافت شده‌است.[۹][۱۰][۱۱]

هیدروکلریک اسید آزاد اولین بار به صورت رسمی در قرن ۱۶ توسط آندریاس لیباویوس معرفی شده‌است که آن را با گرم کردن نمک در بوته چینی خاک رسی به دست آورد.[۱۲] دیگر نویسندگان ادعا می‌کنند که هیدروکلریک اسید خالص اولین بار توسط کاهن بندیکتی باسیل والنتین آلمانی در قرن ۱۵،[۱۳] با گرم کردن نمک طعام معمولی و آهن(II) سولفات کشف شده‌است.[۱۴] درحالیکه دیگران مدعی اند که هیچ مرجع قابل اعتمادی راجع به اینکه هیدروکلریک اسید خالص تا اواخر قرن شانزدهم به دست آمده باشد، وجود ندارد.[۱۵]

در قرن هفدهم، ژوهان رودولف گلابر از کارل اشتات آم ماین از نمک سدیم کلرید و سولفوریک اسید برای تهیهٔ سدیم سولفات در واکنش مانهایم استفاده کرد که گاز هیدروژن کلرید آزاد می‌کرد. جوزف پریستلی از لیدز انگلستان، هیدروژن کلرید خالص را در ۱۷۷۲ تهیه کرد،[۱۶] و در ۱۸۰۸ همفری دیوی از پزانس انگلستان، ثابت کرده بود که ترکیب شیمیایی شامل هیدروژن و کلر بوده‌است.[۱۷]

همزمان با انقلاب صنعتی در اروپا، تقاضا برای مواد قلیایی افزایش یافت. فرایند جدیدی توسط نیکولاس لبلانک (ایسودان، فرانسه) تولید ارزان قیمت و گستردهٔ سدیم کربنات (جوش شیرین) را ممکن کرد. در این فرایند لبلانک، نمک طعام با استفاده از سولفوریک اسید، سنگ آهک و زغال‌سنگ ضمن آزاد کردن هیدروژن کلرید به عنوان فراوردهٔ جانبی، به جوش شیرین تبدیل می‌شود. تا زمان قانون قلیایی ۱۸۶۳ در برتانیا و قوانین مشابه در دیگر کشورها، HCl اضافی وارد هوا می‌شد. بعد از قانون‌گذاری، تولیدکنندگان جوش شیرین مجبور به انتقال گاز اتلافی به آب و جذب آن در آب شدند تا هیدروکلریک اسید در مقیاس صنعتی تولید کنند.[۱۸]

در قرن بیستم، فرایند لبلانک جای خود را به فرایند سولوای که فراوردهٔ جانبی هیدروکلریک اسید تولید نمی‌کرد و مؤثرتر بود، داد. به خاطر آن که هیدروکلریک اسید همچنان به عنوان یک ماده شیمیایی مهم در کاربردهای متعدد شناخته می‌شد، میل تجاری روش‌های تولید دیگری را نیز موجب شد که برخی همچنان به کار گرفته می‌شوند. بعد از سال ۲۰۰۰، هیدروکلریک اسید بیشتر با جذب هیدروژن کلرید اضافی از تولید ترکیبات آلی صنعتی تولید می‌گردد.[۱۸]

از ۱۹۸۸، هیدروکلریک اسید با عنوان پیشرو در جدول دوم پیمان نامه سازمان ملل علیه خرید و فروش غیرقانونی مواد مخدر و مواد روانگردان در سال ۱۹۸۸ به علت استفاده از آن در تولید و ساخت هروئین، کوکائین و مت آمفتامین ذکر شده‌است.[۱۹]

خواص شیمیایی و واکنش‌ها

هیدروژن کلرید (HCl) اسید تک پروتونی است، به این معنی که می‌تواند فقط یک بار تفکیک شود (مثلاً یونیزه) تا یک یون H+ (یک پروتون تنها) آزاد کند. در هیدروکلریک اسید آبی، H+ به یک مولکول آب می‌پیوندد تا یک یون هیدرونیوم، H3O+ تشکیل دهد:[۲۰][۲۱] HCl + H2O → H3O+ + Cl

دیگر یون تشکیل شده Cl، یون کلرید است؛ بنابراین هیدروکلریک اسید می‌تواند برای تهیه نمک‌های کلرید، مثل سدیم کلرید به کار رود. هیدروکلریک اسید یک اسید قوی است چون در اصل به‌طور کامل در آب تفکیک می‌شود.

اسیدهای تک پروتون دار یک ثابت تفکیک اسیدی، Ka، دارد که نشانگر میزان تفکیک در آب است. برای یک اسید قوی مثل HCl، مقدار Ka بزرگ است. تلاش‌های نظری برای اختصاص یک Ka به HCl انجام پذیرفته‌اند.[۲۲] وقتی نمک‌های کلرید مثل NaCl به HCl آبی اضافه می‌شوند، عملاً تأثیری بر pH ندارند، این یعنی که Cl یک باز مزدوج بسیار ضعیف است و HCl کاملاً در محلول آبی تفکیک شده‌است. برای محلول‌های متوسط تا قوی هیدروکلریک اسید، فرض اینکه مولاریتهی H+ (یک یکای غلظت) دقیقاً برابر با مولاریتهٔ HCl است، با توجه به چهار رقم معنی دار درست است.

از بین شش اسید معروف قوی از اسیدهای معدنی در شیمی، هیدروکلریک اسید، یک پروتون دارد و کمترین تمایل را به شرکت در یک واکنش اکسایش-کاهش دارد. برخلاف اسیدی بودن آن، یکی از کم خطرترین اسیدها برای استفاده است زیرا شامل یون کلرید واکنش ناپذیر و غیر سمی است. محلول‌های نسبتاً قوی هیدروکلریک اسید ضمن نگهداری شان کاملاً پایدار هستند و غلظت آن‌ها در زمان ثابت می‌ماند. این ویژگی‌ها به علاوهٔ این که به عنوان یک واکنشگر ناب خالص در دسترس است، هیدروکلریک را به یک واکنش گر اسیدی عالی مبدل می‌سازد.

هیدروکلریک اسید یک اسید مطلوب در تیتراسیون برای تعیین مقدار بازها است. تیترانت‌های اسید قوی نتایج دقیق تری به خاطر نقطه پایانی متمایزشان می‌دهند. آزئوتروپ یا (محلول نقطه جوش ثابت) هیدروکلریک اسید (تقریباً ۲۰٫۲٪) را می‌توان به عنوان استاندارد اولیه در تحلیل‌های کمی به کار برد اگرچه، غلظت دقیق آن به فشار جوی که در آن تهیه شده‌است، بستگی دارد.[۲۳]

استفاده از هیدروکلریک اسید در شیمی تجزیه برای تهیه محلول‌ها (ی “ساده”) جهت تجزیه بسیار رایج است. هیدروکلریک اسید غلیظ گاز هیدروژن، کلریدهای فلز اکسید شده و فلزهای زیادی را در خود حل می‌کند و با ترکیب‌های بازی مثل سدیم کربنات یا مس (II) اکسید واکنش داده و کلریدهای حل شده‌ای را ترکیب می‌کند که قابل تحلیل هستند.

خواص فیزیکی

غلظتچگالیغلظت مولارپی‌اچگرانرویظرفیت گرماییفشار بخارنقطه جوشدمای ذوب
kg HCl/kgkg HCl/m3Baumékg/Lmol/dm3mPa•skJ/(kg•K)kPa°C°C
۱۰٪۱۰۴٫۸۰۶٫۶۱٫۰۴۸۲٫۸۷−۰٫۵۱٫۱۶۳٫۴۷۱٫۹۵۱۰۳−۱۸
۲۰٪۲۱۹٫۶۰۱۳۱٫۰۹۸۶٫۰۲−۰٫۸۱٫۳۷۲٫۹۹۱٫۴۰۱۰۸−۵۹
۳۰٪۳۴۴٫۷۰۱۹۱٫۱۴۹۹٫۴۵−۱٫۰۱٫۷۰۲٫۶۰۲٫۱۳۹۰−۵۲
۳۲٪۳۷۰٫۸۸۲۰۱٫۱۵۹۱۰٫۱۷−۱٫۰۱٫۸۰۲٫۵۵۳٫۷۳۸۴−۴۳
۳۴٪۳۹۷٫۴۶۲۱۱٫۱۶۹۱۰٫۹۰−۱٫۰۱٫۹۰۲٫۵۰۷٫۲۴۷۱−۳۶
۳۶٪۴۲۴٫۴۴۲۲۱٫۱۷۹۱۱٫۶۴−۱٫۱۱٫۹۹۲٫۴۶۱۴٫۵۶۱−۳۰
۳۸٪۴۵۱٫۸۲۲۳۱٫۱۸۹۱۲٫۳۹−۱٫۱۲٫۱۰۲٫۴۳۲۸٫۳۴۸−۲۶
دما و فشار مرجع برای جدول فوق ۲۰˚C و ۱ اتمسفر (101.325 kPa) است. مقادیر فشار بخار از جداول بین‌المللی بحرانی اخذ شده‌اند و همان فشار بخار کل محلول هستند.

دمای ذوب به عنوان یک تابع از غلظت HCl در آب[۲۴][۲۵]

خواص فیزیکی هیدروکلریک اسید، مثل نقطه جوش و دمای ذوب، چگالی و pH بستگی به غلظت یا مولاریته HCl در محلول آبی دارند که از خواص آب در غلظت‌های نزدیک به ۰٪ اسید تا مقادیر بخاری هیدروکلریک اسید در بیش از 40% HCl متغیر هستند.[۲۶]

هیدروکلریک اسید به عنوان مخلوط دوتایی (دو جزئی) از HCl و H2O آزئوتروپ نقطه جوش ثابتی در 20.2% HCl و ۱۰۸٫۶ ˚F (227 ˚F) دارد. چهار نقطه اوتکتیک ثابت بلوری شدن برای هیدروکلریک اسید، بین شکل‌های بلور HCl•H2O (68% HCl), HCl•2H2O (51% HCl), HCl•3H2O (۴۱٪)، HCl•6H2O (25% HCl) و یخ (0% HCl) وجود دارد. هم چنین نقطه ثابت اوتکتیک در ۲۴٫۸٪ بین یخ و بلور HCl•3H2O موجود است.

تولید

هیدروکلریک اسید با حل شدن هیدروژن کلرید در آب تهیه می‌شود. هیدروژن کلرید را می‌توان با روش‌های گوناگونی تولید کرد و این یعنی راه‌های زیادی برای ساخت هیدروکلریک اسید موجودند. تولید مقیاس بزرگ هیدروکلریک تقریباً همیشه با تولید در مقیاس صنعتی دیگر مواد شیمیایی انجام می‌پذیرد.

بازار صنعتی

هیدروکلریک اسید در محلول‌های تا ۳۸٪ از HCl (مقدار غلیظ) تهیه می‌شود. غلظت‌های بیشتر فقط تا ۴۰٪ از نظر شیمیایی قابل تولید هستند، اما نرخ تبخیر از آن به بعد به قدری بالا است که نگهداری و استفاده از آن نیازمند ملاحظات اضافی تری است مثل دمای پایین و فشار بالا. پس میزان عمدهٔ صنعتی آن ۳۰٪ تا ۳۴٪ است که با توجه به حمل و نقل مناسب و اتلاف مادهٔ محدود به علت بخارهای HCl بهینه شده‌است. غلظت‌های بیشتر را به جهت کنترل اتلاف از طریق تبخیر باید فشرده و سرد نمود. در ایالات متحده، محلول‌های بین ۲۰٪ تا ۳۲٪ با نام اسید موریاتیک فروخته می‌شوند. محلول‌های مورد استفاده اغلب برای نظافت خانه‌ها در ایالات متحده، معمولاً ۱۰٪ تا ۱۲٪ هستند که هشدارهای جدی برای رقیق‌تر کردن شان قبل از استفاده دارند. در بریتانیا، که با نام «جوهر نمک» برای نظافت خانگی فروخته می‌شود، قدرت اسید برابر همان مقدار در ایالات متحده است.

تولیدکنندگان بزرگ جهانی شامل شرکت داو کمیکال ۲ میلیون تن در سال از HCl گازی، شرکت جرجیا گالف، شرکت توسوه، آکزونوبل و تساندرلو بین ۰٫۵ تا ۱٫۵ میلیون تن در سال تولید دارند. تولید کل جهان، که برای استفاده‌های آماری بر اساس میزان HCl توصیف شده‌است، حدود ۲۰ میلیون تن در سال تخمین زده می‌شود که ۳ میلیون تن از طریق تولید مستقیم و مابقی از طریق استفاده از ترکیب‌های آلی و مشابه و تولید فراوردهٔ ثانوی تأمین می‌گردند. تا کنون، غالب هیدروکلریک اسید منحصراً توسط تولیدکننده مصرف می‌شود. میزان آن در بازار آزاد جهانی ۵ میلیون تن در سال تخمین زده می‌شود.

اسیدشویی فولاد

یکی از مهم‌ترین استفاده‌های هیدروکلریک اسید در اسیدشویی فولاد است تا زنگ یا اکسید آهن را از روی آهن یا فولاد قبل از ورود آن‌ها به واکنش‌های بعدی مثل اکستروژن، نورد، “گالوانی کردن و دیگر تکنیک‌ها، بزداید. HCl در کیفیت فنی با غلظت معمولاً ۱۸٪ رایج‌ترین عامل اسیدشویی برای اسیدشویی فولادهای کربنی است. Fe2O3 + Fe + 6 HCl → 3 FeCl2 + 3 H2O

اسید مصرف شده استفادهٔ بسیاری در محلول‌های کلرید آهن (II) (هم چنین معروف به فررو کلرید) دارد اما مقادیر بالای فلزات سنگین در مایع اسیدشویی این عملیات را با مشکل مواجه کرده‌است.

صنعت اسیدشویی فولاد فرایندهای بازسازی هیدروکلریک اسید را بهبود بخشیده‌است، مثل فرایند بازسازی HCl سرخ‌کنندهٔ اسپری یا بستر سیال که بازیافت HCl را از مایع اسیدشویی مصرف شده ممکن می‌سازد. رایج‌ترین فرایند بازسازی فرایند پیروهیدرولیز طی واکنش زیر است: 4 FeCl2 + 4 H2O + O2 → 8 HCl+ 2 Fe2O3

با بهبودی اسید مصرف شده یک حلقه اسیدی بسته ساخته می‌شود. فراوردهٔ جانبی اکسید آهن (II) از واکنش بازسازی باارزش است چون در بسیاری از صنایع ثانوی به کار می‌رود.

تولید ترکیبات آلی

دیگر استفاده مهم هیدروکلریک اسید در تولید ترکیبات آلی، مثل وینیل کلرید و دی کلرواتان برای پلی وینیل کلراید (PVC) است. معمول این کار یک استفادهٔ غیرآزاد است زیرا مصرف محلی هیدروکلریک اسید تولید شده در واقع به بازار آزاد نمی‌رسد. دیگر ترکیبات آلی تولید شونده توسط هیدروکلریک اسید عبارتند از بیسفنول ای برای پلی کربنات، کربن فعال و اسید اسکوربیک مثل تولیدات متعدد داروهای شیمیایی. 2 CH2=CH2 + 4 HCl + O2 → 2 ClCH2CH2Cl + 2 H2O (دی کلرواتان توسط اکسی کلری شدن)

چوب + HCl + حرارت ← کربن فعال (فعال سازی شیمیایی)

تولید ترکیبات غیرآلی

محصولات زیادی توسط هیدروکلریک اسید طی یک واکنش اسید و باز طبیعی منجر به ترکیبات معدنی (غیرآلی) تولید می‌شوند و هم چنین مواد شیمیایی درگیر با آب مثل کلرید آهن (III) و پلی آلومینیوم کلراید (PAC). Fe2O3 + 6 HCl → 2 FeCl3 + 3 H2O (کلرید آهن (III) از مگنتیت)

کلرید آهن (III) و PAC هر دو به عنوان عوامل لخته سازی و انعقاد در تصفیه آب و فاضلاب، تولید آب آشامیدنی و تولید کاغذ به کار می‌روند. دیگر ترکیبات معدنی تولید شونده با هیدروکلریک اسید شامل کلرید کلسیم، نمک پخش در جاده، کلرید نیکل (II) برای آبکاری الکتریکی و کلرید روی برای صنعت گالوانی کردن و تولید باتری هستند. CaCO3 + 2 HCl → CaCl2 + CO2 + H2O (کلرید کلسیم از سنگ آهک)

کنترل pH و خنثی سازی

هیدروکلریک اسید هم چنین برای تنظیم اسیدی بودن (pH) محلول‌ها به کار می‌رود. OH + HCl → H2O + Cl

در خلوص مورد نیاز صنایع (غذایی، دارویی، آب آشامیدنی)، هیدروکلریک اسید با کیفیت برای تنظیم pH فرایند جریان‌های آبی مورد استفاده قرار می‌گیرد. در صنایع کم‌تقاضا، هیدروکلریک اسید با کیفیت فنی برای خنثی سازی جریان‌های اتلافی و مراقبت از استخر شنا به کار گرفته می‌شود.

بازسازی مبدل‌های یونی

هیدروکلریک اسید پر کیفیت در بازسازی یک رزین مبدل یون به کار گرفته می‌شود. تبادل کاتیون به‌طور گسترده برای حذف یون‌هایی مثل Na+ و Ca2+ از محلول‌های آبی در تولید آب معدنی شده مورد استفاده قرار می‌گیرد. اسید برای شستن کاتیون‌ها از رزین‌ها به کار می‌رود. Na+ با H و Ca2+ با 2Hجایگزین می‌شود.

مبادله می‌شوند. مبدل‌های یونی و آب معدنی در تمام صنایع شیمیایی، تولید آب آشامیدنی و اکثر صنایع غذایی مورد استفاده قرار می‌گیرند.

دیگر کاربردهای هیدروکلریک اسید

هیدروکلریک اسید در تعداد زیادی از کاربری‌های مقیاس کوچک مثل فرایند چرم سازی، خالص سازی نمک طعام، نظافت و خانه‌داری،[۲۷] و بنای ساختمان‌ها به کار می‌رود. تولید نفت را می‌توان با تزریق هیدروکلریک اسید در بستر صخره‌ای یک چاه نفت، حل کردن یک بخش از صخره و ساختن یک منفذ بزرگ تحریک کرد. اسیدزنی چاه نفت یک فرایند معمول در صنعت تولید نفت دریای شمال است.

هیدروکلریک اسید برای حل کردن کلسیم کربنات نیز به کار می‌رود به عنوان مثال برای پوسته پوسته کردن کتری‌ها و برای پاک کردن ملات از آجرکاری‌ها. البته یک مایع خطرناک است که باید با دقت کافی از آن استفاده کرد. ضمن استفاده روی یک آجرکاری، واکنش آن با ملات تا جایی که کل اسید تبدیل شود ادامه می‌یابد و کلسیم کربنات، کربن دی‌اکسید و آب را به همراه دارد:
2HCl + CaCO3 → CaCl2 + CO2 + H2O

اکثر واکنش‌های شیمیایی هیدروکلریک اسید در تولید غذا، مواد تشکیل دهنده غذا و افزودنی‌های غذایی به کار گرفته می‌شوند. محصولات رایج عبارتند از آسپارتام، فروکتوز، سیتریک اسید، لیزین، پروتئین گیاهی هیدرولیز شده با اسید به عنوان مقوی غذایی، و در تولید ژلاتین. هیدروکلریک اسید مورد استفاده در صنایع غذایی (خیلی خالص) را می‌توان موقع نیاز برای محصول نهایی به کار برد.

در سیاره زهره ابرهایی از هیدروکلریک اسید با غلظت کم وجود دارد.

نقش بیولوژیک

نمودار غشاء مخاطی قلیایی در معده با مکانیزم‌های دفاعی مخاطی

اسید معده یکی از ترشحات اصلی معده است و به‌طور عمده شامل هیدروکلریک اسید بوده و محتوای معده را طوری اسیدی می‌کند که پی اچ بین ۱ و ۲ داشته باشد.[۲۸][۲۹]

یون‌های کلرید (Cl) و هیدروژن (H+) در ناحیهٔ بالایی معده توسط یاخته جداری از مخاط اسید معده ترشح می‌شوند و به سمت یک شبکهٔ ترشحی به نام کانالیکولی قبل از اینکه وارد حفره پایینی معده شوند، هدایت می‌شوند.[۳۰]

اسید معده مانند یک سد مقابل ریزاندامه‌ها برای جلوگیری از عفونت‌ها ظاهر می‌شود و برای هضم غذا اهمیت زیادی دارد. پی اچ پایین آن پروتئین‌ها را دناتوره می‌کند و در نتیجه آن‌ها را برای تخریب توسط آنزیم‌های گوارشی مثل پپسین حساس می‌کند. پی اچ پایین هم چنین آنزیم پیشروی پپسینوژن را فعال و تبدیل به آنزیم فعال پپسین (با خودشکافی) می‌کند. بعد از ترک معده، هیدروکلریک اسید کیموس توسط سدیم بی کربنات در دوازدهه خنثی می‌شود.

خود معده با ترشح لایهٔ ضخیم مخاط، و با سکرتین ناشی از محلول بافر سدیم بی کربنات در مقابل این اسید قوی از خود محافظت می‌کند. سوزش یر دل یا زخم معده وقتی این مکانیزم‌ها دچار مشکل شوند، رخ می‌دهند. داروهای آنتی هیستامین و دسته‌های مهارکننده‌های پروتون پمپ می‌توانند تولید اسید در معده را مهار کنند، و آنتاسیدها نیز برای خنثی تر کردن اسید موجود مورد استفاده قرار می‌گیرند.[۳۱]

ایمنی

غلظت بر حسب وزنطبقه‌بندی[۳۲]کد ایمنی
۱۰–۲۵٪محرک (Xi)R36/37/38
> ۲۵٪خورنده (C)R۳۴ R۳۷

هیدروکلریک اسید غلیظ (هیدروکلریک اسید بخار) مه‌های اسیدی تشکیل می‌دهد. مه و محلول هر دو تأثیر خورنده بازگشت‌ناپذیری بر بافت انسان با قابلیت تخریب اندام‌های تنفسی، چشم‌ها، پوست و روده‌ها دارند. پس از اختلاط هیدروکلریک اسید با مواد شیمیایی اکسیدکنندهٔ معمول مثل سدیم هیپوکلریت (سفیدکننده، NaClO) یا پتاسیم پرمنگنات (KMnO4)، گاز سمی کلر تولید می‌شود. NaClO + 2 HCl → H2O + NaCl + Cl22 KMnO4 + 16 HCl → 2 MnCl2 + 8 H2O + 2 KCl + 5 Cl2

تجهیزات ایمنی مثل دستکش‌های لاستیکی یا PVC، عینک‌های ایمنی محافظ چشم و کفش‌ها و لباس‌های مقاوم در برابر مواد شیمیایی برای به حداقل رساندن خطرات استفاده از هیدروکلریک اسید به کار می‌روند. آژانس حفاظت محیط زیست ایالات متحده آمریکا هیدروکلریک اسید را یک مادهٔ سمی معرفی کرده و مقررات آن را تنظیم می‌نماید.[۳۳]

شماره بین‌المللی کالاهای خطرناک یا شمارهٔ وزارت ترابری آمریکا (DOT) آن ۱۷۸۹ است. این شماره روی یک پلاکارد بر روی محفظه نمایش داده می‌شود.

اب سنگین

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی و مهندسی

اب سنگین:

آب سنگین معمولاً به اکسید هیدروژن سنگین، D۲O یا ۲H۲O اطلاق می‌شود. هیدروژن سنگین یا دوتریم (Deuterium) ایزوتوپی پایدار از هیدروژن است که به نسبت یک به ۶۴۰۰ از اتم‌های هیدروژن در طبیعت وجود دارد. در آب سنگین (با فرمول D۲O) ایزوتوپ هیدروژن به نام دوتریم (با نماد اتمی ۲H یا D) با اکسیژن ترکیب شده‌است. خواص فیزیکی و شیمیایی آن به نوعی مشابه با آب معمولی یا همان H۲O است. از کاربردهای این آب می‌توان به استفاده از آن در رآکتورهای هسته‌ای با سوخت اورانیم، به عنوان مهارگر (Moderator) به جای گرافیت و نیز عامل انتقال گرمی رآکتور نام برد.[۱]

دوتریم اکسید
نام‌گذاری آیوپاک[2H]2-water
دیگر نام‌هاDeuterium monoxide
Deuterium oxide Water-d2
شناساگرها
شماره ثبت سی‌ای‌اس۷۷۸۹-۲۰-۰ 
پاب‌کم۲۴۶۰۲
کم‌اسپایدر۲۳۰۰۴ 
UNIIJ65BV539M3 
شمارهٔ ئی‌سی232-148-9
KEGGD03703 
MeSHDeuterium+oxide
ChEBICHEBI:41981 
ChEMBLCHEMBL۱۲۳۲۳۰۶ 
شمارهٔ آرتی‌ئی‌سی‌اسZC0230000
مرجع جی‌ملین97
جی‌مول-تصاویر سه بعدیImage 1
SMILES [2H]O[2H]
InChI InChI=1S/H2O/h1H2/i/hD2 
Key: XLYOFNOQVPJJNP-ZSJDYOACSA-N InChI=1/H2O/h1H2/i/hD2
Key: XLYOFNOQVPJJNP-ZSJDYOACEI
خصوصیات
فرمول مولکولی2H2O
جرم مولی20.0276 g mol−1
شکل ظاهریVery pale blue transparent liquid very similar to regular water
چگالی1.107 g cm−3
دمای ذوب۳٫۸ درجه سلسیوس (۳۸٫۸ درجه فارنهایت؛ ۲۷۶٫۹ کلوین)
دمای جوش‎101 °C, 374 K, 214 °F
انحلال‌پذیری در آبReacts
log P−1.38
گرانروی0.00125 Pa s (at 20 °C)
گشتاور دوقطبی1.87 D
خطرات
MSDSExternal MSDS
لوزی آتشNFPA 704 four-colored diamond
به استثنای جایی که اشاره شده‌است در غیر این صورت، داده‌ها برای مواد به وضعیت استانداردشان داده شده‌اند (در 25 °C (۷۷ °F)، ۱۰۰ kPa)
  (بررسی) (چیست: ✔/؟)
Infobox references

با آب سخت اشتباه نشود.

ساختار و خواص شیمیایی

مولکول آب سنگین همانند مولکول آب معمولی، یک مولکول قطبی است و زاویه پیوند در آن کم‌تر از زاویه چهاروجهی منتظم، یعنی کم‌تر از ۱۰۹٫۵ درجه است.[۲] این مولکول همانند آب معمولی به عنوان یک ماده آمفی‌پروتیک عمل می‌کند؛ یعنی می‌تواند یون هیدروژن بدهد و بگیرد (در این‌جا ایزوتوپ دوتریم است که به شکل یون مثبت، مبادله می‌گردد).[۳] به دلیل کوچک‌تر بودن ایزوتوپ دوتریم نسبت به پروتیم (هیدروژن معمولی) طول پیوند O-D در آب سنگین اندکی از طول پیوند آب معمولی (O-H) کم‌تر است.

تاریخچه

والتر راسل در سال ۱۹۲۶ با استفاده از جدول تناوبی «مارپیچ» وجود دوتریم را پیش‌بینی کرد.

هارولد یوری شیمیدان و از پیشتازان فعالیت روی ایزوتوپها که در سال ۱۹۳۴ جایزه نوبل در شیمی گرفت در سال ۱۹۳۱ ایزوتوپ هیدروژن سنگین را که بعدها به منظور افزایش غلظت آب مورد استفاده قرار گرفت، کشف کرد.

همچنین در سال ۱۹۳۳، گیلبرت نیوتن لوویس (Gilbert Newton Lewis شیمیدان و فیزیکدان مشهور آمریکایی) استاد هارولد یوری توانست برای اولین بار نمونه آب سنگین خالص را به‌وسیله عمل برق‌کافت تولید کند.

اولین کاربرد علمی از آب سنگین در سال ۱۹۳۴ توسط دو بیولوژیست به نام‌های هوسی (Hevesy) و هافر (Hoffer) صورت گرفت. آن‌ها آب سنگین را برای آزمایش ردیابی بیولوژیکی، به منظور تخمین میزان بازدهی آب در بدن انسان، مورد استفاده قرار دادند.

روش تهیه

در طبیعت از هر ۳۲۰۰ مولکول آب یکی آب نیمه سنگین (HDO) است. هنگامی که مقدار HDO در آب زیاد شد، میزان آب سنگین نیز بیشتر می‌شود زیرا مولکول‌های آب هیدروژن‌های خود را با یکدیگر عوض می‌کنند و احتمال دارد که از دو مولکول HDO یک مولکول H۲O یا آب معمولی و یک مولکول D۲O یا آب سنگین به وجود آید. برای تولید آب سنگین خالص با استفاده از روش‌های تقطیر یا الکترولیز به دستگاه‌های پیچیده تقطیر و الکترولیز و همچنین مقدار زیادی انرژی نیاز است، به همین دلیل بیشتر از روش‌های شیمیایی برای تهیه آب سنگین استفاده می‌کنند.

کاربردهای صنعتی

کندکننده نوترون

آب سنگین در بعضی از انواع رآکتورهای هسته‌ای نیز به عنوان کندکننده نوترون به کار می‌رود. نوترون‌های کند می‌توانند با اورانیوم واکنش بدهند. از آب سبک یا آب معمولی هم می‌توان به عنوان کندکننده استفاده کرد، اما از آنجایی که آب سبک نوترونهای حرارتی را هم جذب می‌کنند، رآکتورهای آب‌سبک باید از اورانیوم غنی شده با خلوص زیاد استفاده کنند، اما رآکتور آب‌سنگین می‌تواند از اورانیوم معمولی یا غنی نشده هم استفاده کند، به همین دلیل تولید آب سنگین به بحث‌های مربوط به جلوگیری از توسعه سلاح‌های هسته‌ای مربوط است. رآکتورهای تولید آب سنگین را می‌توان به گونه‌ای ساخت که بدون نیاز به تجهیزات غنی سازی، اورانیوم را به پلوتونیوم قابل استفاده در بمب اتمی تبدیل کند. البته برای استفاده از اورانیوم معمولی در بمب اتمی می‌توان از روش‌های دیگری هم استفاده کرد.

کشورهای هند، اسرائیل، پاکستان، کره شمالی، روسیه و آمریکا از رآکتورهای تولید آب سنگین برای تولید بمب اتمی استفاده کردند. با توجه به امکان استفاده از آب سنگین در ساخت سلاح هسته‌ای، در بسیاری از کشورها دولت تولید یا خرید و فروش مقدار زیاد این ماده را کنترل می‌کند. اما در کشورهایی مثل آمریکا و کانادا می‌توان مقدار غیر صنعتی یعنی در حد گرم و کیلوگرم را بدون هیچ گونه مجوز خاصی از تولیدکنندگان یا عرضه‌کنندگان مواد شیمیایی تهیه کرد. هم‌اکنون قیمت هر کیلوگرم آب سنگین با خلوص ۹۸/۹۹درصد حدود ۶۰۰ تا ۷۰۰ دلار است. گفتنی است بدون استفاده از اورانیوم غنی شده و آب سنگین هم می‌توان رآکتور تولید پلوتونیوم ساخت. کافی است که از کربن فوق‌العاده خالص (کُک) به عنوان کندکننده استفاده شود از آنجایی که نازی‌ها از کربن ناخالص استفاده می‌کردند، متوجه این نکته نشدند در حقیقت از اولین رآکتور اتمی آزمایشی آمریکا سال ۱۹۴۲ و پروژه منهتن که پلوتونیوم آزمایش ترینیتی و بمب مشهور «فت من» را ساخت، از اورانیوم غنی شده یا آب سنگین استفاده نمی‌شد.

آشکار سازی نوترینو

رصد خانه نوترینوی سادبری در انتاریوی کانادا از هزار تن آب سنگین استفاده می‌کند. آشکار ساز نوترینو در اعماق زمین و در دل یک معدن قدیمی کار گذاشته شده تا مئون‌های پرتوهای کیهانی به آن نرسد. هدف اصلی این رصدخانه یافتن پاسخ این پرسش است که آیا نوترینوهای الکترون که از همجوشی در خورشید تولید می‌شوند، در مسیر رسیدن به زمین به دیگر انواع نوترینوها تبدیل می‌شوند یا خیر. وجود آب سنگین در این آزمایش‌ها ضروری است، زیرا دوتریم مورد نیاز برای آشکارسازی انواع نوترینوها را فراهم می‌کند.

آب سنگین یکی از اجزای داخلی یک بمب هیدروژنی است.

از آن در ساخت دستگاه های NMR spectroscopy استفاده میشود که —

— یکی از موارد کاربرد آن کشف و نمایش شکل ملکول های مواد دارویی است.

طیف‌سنجی تشدید مغناطیسی هسته‌ای

آب نیمه سنگین

چنانچه در اکسید هیدروژن تنها یکی از اتم‌های هیدروژن به ایزوتوپ دوتریوم تبدیل شود نتیجه حاصله (HDO) را آب نیمه سنگین می‌گویند. در مواردی که ترکیب مساوی از هیدروژن و دوتریوم در تشکیل مولکولی آب حضور داشته باشند، آب نیمه سنگین تهیه می‌شود. دلیل این امر تبدیل سریع اتم‌های هیدروژن و دوتریوم بین مولکول‌های آب است، مولکول آبی که از ۵۰ درصد هیدروژن معمولی (H) و ۵۰ درصد هیدروژن سنگین(D) تشکیل شده‌است، در موازنه شیمی در حدود ۵۰ درصد HDO و ۲۵ درصد آب (H2O) و ۲۵ درصد D2O خواهد داشت.

نکته قابل توجه آن است که آب سنگین را نباید با آب سخت که اغلب شامل املاح زیاد است یا با آب تریتیوم (T2O or 3H۲O) که از ایزوتوپ دیگر هیدروژن تشکیل شده‌است، اشتباه گرفت. تریتیوم ایزوتوپ دیگری از هیدروژن است که خاصیت رادیواکتیو دارد و بیشتر برای ساخت موادی که از خود نور منتشر می‌کنند بکار برده می‌شود.

آب با اکسیژن سنگین

آب با اکسیژن سنگین، در حالت معمول H۲۱۸O است که به صورت تجارتی در دسترس است ببیشتر برای ردیابی بکار برده می‌شود. به عنوان مثال با جایگزین کردن این آب (از طریق نوشیدن یا تزریق) در یکی از عضوهای بدن می‌توان در طول زمان میزان تغییر در مقدار آب این عضو را بررسی کرد.

این نوع از آب به ندرت حاوی دوتریوم است و به همین علت خواص شیمیایی و بیولوژیکی خاصی ندارد برای همین به آن آب سنگین گفته نمی‌شود. ممکن است اکسیژن در آن‌ها به صورت ایزوتوپ‌های O۱۷ نیز موجود باشد، در هر صورت تفاوت فیزیکی این آب با آب معمولی تنها چگالی بیشتر آن است.

آزمون‌های سوخت و ساز در بدن

از مخلوط آب سنگین با ۱۸O H۲ (آبی که اکسیژن آن ایزوتوپ ۱۸O است نه ۱۶O) برای انجام آزمایش اندازه‌گیری سرعت سوخت و ساز بدن انسان و حیوانات استفاده می‌شود. این آزمون سوخت و ساز را معمولاً آزمون آب دوبار نشان دار شده می‌نامند.

واکنش های شیمیایی

واکنش های شیمیایی:

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی و مهندسی

واکنش شیمیایی (به انگلیسی: Chemical reaction) فرایندی است که در آن ساختار ذره‌های تشکیل دهندهٔ مواد اولیه دچار تغییر می‌شود؛ یعنی طی آن یک یا چند ماده شیمیایی به یک یا چند ماده شیمیایی دیگر تبدیل می‌شود. مثلاً: همان‌گونه که دیده می‌شود؛ CH
4 + 2 O
2 → CO
2 + 2 H
2O, در اینجا ضریب ۲ قبل از گاز اکسیژن در طرف واکنش دهنده‌ها، و قبل از آب در کنار محصول به دست آمده از این واکنش شیمیایی قرار می‌گیرد تا برابر قانون بقای جرم، مقدار هر عنصر در طول واکنش تغییر نکند.

انواع تغییرات مواد

تغییراتی که در واکنشی بر روی مواد واکنش‌دهنده صورت می‌گیرد، به‌طور کلی به دو نوع تغییرات فیزیکی و شیمیایی تقسیم می‌شوند.

تغییرات فیزیکی

در تغییرات فیزیکی فقط حالت فیزیکی ماده تغییر می‌یابد نه ساختار ذره‌های تشکیل دهنده ماده؛ بنابراین تغییرات همهٔ حالات ماده مانند ذوب، انجماد، تبخیر، میعان، تصعید (فرازش) و چگالش و همچنین انحلال نمک‌ها و بازها در آب، تغییر فیزیکی هستند.

تغییرات شیمیایی

در تغییرات شیمیایی اتصال اتم‌ها به یکدیگر و آرایش الکترونی آن‌ها در واکنش‌دهنده‌ها تغییر می‌یابد. البته در یک واکنش شیمیایی، اتم‌ها نه به‌وجود می‌آیند و نه از بین می‌روند و تنها ترکیب، تجزیه یا بازآرایی می‌شوند. واکنش شیمیایی بیان یک تغییر شیمیایی است که ممکن است با آزاد کردن انرژی به صورت گرما، نور یا صوت همراه باشند و تولید گاز، تشکیل رسوب یا تغییر رنگ در پی داشته باشند.

روی دادن تغییر فیزیکی و تغییر شیمیایی به‌طور متوالی

مواردی وجود دارد که هر دو تغییر فیزیکی و شیمیایی بر روی یک پدیده، به‌طور متوالی اتفاق می‌افتند. برای نمونه، با حرارت دادن تکه‌ای قند در لوله آزمایش، ابتدا قند ذوب می‌شود که یک پدیدهٔ فیزیکی است. سپس به رنگ قهوه‌ای در می‌آید که نشان‌دهندهٔ شروع تبدیل قند به کربن و یک پدیدهٔ شیمیایی است. در ادامه مقداری بخار آب به بالای لوله می‌رسد که نشانهٔ تجزیهٔ قند و ادامهٔ پدیدهٔ شیمیایی پیشین است. سپس قطره‌های آب روی دیوارهٔ لولهٔ آزمایش پدیدار می‌شود که نشان‌دهندهٔ میعان بخار آب آزاد شده و یک پدیدهٔ فیزیکی است. در پایان، در لوله ماده‌ای سیاه رنگ، بی‌مزه و نامحلول در آب (برخلاف قند اولیه) باقی می‌ماند که این ماده زغال است و با توجه به تغییر رنگ، مزه و قابلیت حلالیت آن در آب

انرژی شیمیایی

هر نوع پیوندی میان اتم‌های مختلف سازندهٔ مولکول‌های یک جسم، نوعی انرژی در انرژی شیمیایی دارد که مقدار آن به نوع اتم‌ها و نحوهٔ قرار گرفتن آن‌ها در مولکول بستگی دارد. در یک واکنش شیمیایی، در واقع اتصال اتم‌ها به یکدیگر در واکنش‌ها تغییر می‌کند و در نتیجه انرژی شیمیایی فراورده‌های واکنش با انرژی شیمیایی واکنش‌دهنده‌ها تفاوت پیدا می‌کند.

به عنوان مثال، واکنش گاز کلر با گاز هیدروژن را در نظر بگیریم. گاز کلر از مولکول‌های دو اتمی Cl۲ و گاز هیدروژن از مولکول‌های دو اتمی H۲ تشکیل شده‌اند. فراوردهٔ واکنش، کلرید هیدروژن HCl خواهد بود که در مقایسه با واکنش‌دهنده، پیوندهای کاملاً متفاوتی دارد و از این رو انرژی شیمیایی آن‌ها متفاوت است.

اکنون این پرسش پیش می‌آید که با توجه به متفاوت بودن انرژی شیمیایی فراورده‌ها و واکنش‌دهنده‌ها و قانون پایستگی انرژی، این اختلاف انرژی چگونه ظاهر می‌شود؟

تغییرات گرماگیر و تغییرات گرمازا

مطابق قانون پایستگی انرژی در هر واکنش انرژی کل باید ثابت بماند؛ بنابراین در واکنش‌ها، اختلاف انرژی میان فراورده‌ها و واکنش‌دهنده‌ها به صورت گرما ظاهر می‌شود. از این رو، واکنش‌هایی نظیر واکنش‌های سوختن متان که با تشکیل کلرید هیدروژن در آن‌ها، سطح انرژی فراورده‌های واکنش از مواد واکنش‌دهنده پایین‌تر باشد، به علت تولید انرژی گرمایی، گرمازا می‌گوییم و در مقابل واکنش‌هایی که در آن‌ها سطح انرژی شیمیایی فراورده‌ها بیشتر از واکنش‌دهنده‌ها باشد، واکنش‌های گرماگیر نامیده می‌شوند و برای انجام چنین واکنشی باید مقداری گرما به اجزای واکنش‌دهنده داده شود، مانند تجزیه کردن کلرید آمونیوم جامد که با گرم کردن، به دو گاز آمونیاک و کلرید هیدروژن تبدیل می‌شود.

بنابراین در اندازه‌گیری و محاسبهٔ انرژی واکنش‌های شیمیایی، چیزی که همیشه محسوس و قابل اندازه‌گیری است، تفاوت محتوای انرژی یا به عبارتی سطح انرژی مواد اولیه و محصولات عمل است که معمولاً به تغییر محتوای گرمایی، تغییر آنتالپی گفته می‌شود و با ΔH نمایش می‌دهند و در یک واکنش گرمازا داریم:

H1: سطح انرژی مواد واکنش دهنده

H2: سطح انرژی مواد حاصل

H2 <H1 H2-H1<0

به این ترتیب تغییر آنتالپی ΔH در یک واکنش انرژی‌ده، منفی است.

در یک واکنش گرماگیر داریم:

H2>H1→H2-H1>0→ΔH>0

پس تغییر آنتالپی، ΔH در یک واکنش انرژی‌گیر، مثبت است.

واکنش‌های شیمیایی برگشت‌پذیر و برگشت‌ناپذیر

واکنش‌های برگشت‌ناپذیر

در این قبیل واکنش‌ها، محصولات واکنش برهم اثر شیمیایی ندارند. به همین دلیل واکنش فقط در جهت رفت انجام می‌گیرد و تا مصرف‌شدن کامل واکنش‌دهنده پیش می‌رود. مثلاً اگر تکه‌ای نوار منیزیم را در ظرف محتوی HCl وارد کنیم، واکنش شدیدی میان منیزیم و اسید رخ می‌دهد و کم‌کم در اسید حل و ناپدید می‌شود و همزمان با ناپدیدشدن فلز، حباب‌های گاز هیدروژن درون اسید به چشم می‌خورند که از ظرف خارج می‌شوند؛ بنابراین این واکنش یک‌طرفه است و فقط در جهت رفت پیش می‌رود. یعنی اگر مقداری گاز هیدروژن را در محلول کلرید وارد کنیم، هیچ واکنشی انجام نمی‌گیرد.

Mg + 2HCl → MgCl2 + H2

علاوه بر واکنش بالا سوختن انواع سوخت‌ها مانند بنزین، نفت، گاز طبیعی و… در مجاورت هوا، محکم شدن تدریجی سیمان، پختن تخم مرغ، مچاله شدن نایلون در برابر شعله، نمونه‌هایی از واکنش‌های برگشت‌ناپذیرند.

واکنش‌های برگشت‌پذیر

این واکنش‌ها در شرایط مناسب در هر دو جهت رفت و برگشت پیش می‌روند، مثلاً اگر بخار آب را از روی گرد آهن داغ عبور دهند، اکسید آهن همراه با گاز هیدروژن پدید می‌آید.

(3Fe(s) + 4H2O(g) → Fe3O4(s) + 4H2(g

و اگر گاز هیدروژن را بر اکسید آهن (Fe3O4) عبور دهند، آهن و بخار آب تولید می‌شود. واکنش برگشت: (Fe3O4(s) + 4H2(g) → 3Fe(s) + 4H2O(l

واکنش رفت و برگشت در مجموع یک واکنش برگشت‌پذیر را تشکیل می‌دهند. در نتیجه واکنش اثر بخار آب بر آهن داغ برگشت‌پذیر است. در زندگی با موارد زیادی از واکنش‌های برگشت‌پذیر برخورد می‌کنیم، مانند شارژ دوبارهٔ باتری اتومبیل. مواد شیمیایی موجود در باتری خودرو هنگام تولید جریان برق به تدریج مصرف شده و به مواد دیگری تبدیل می‌شود. با شارژ مجدد باتری، واکنش‌های برگشت انجام می‌گیرند و مواد اولیه پدید می‌آیند.

مثال‌هایی از فرایندهای شیمیایی

همان‌طور که در پیش گفته شد، در تغییر شیمیایی ماهیت شیمیایی مواد تغییر می‌یابد و فراورده‌های جدید با خواص متفاوت از مواد اولیه تولید می‌شود؛ بنابراین پدیده‌های زیر نمونه‌هایی از تغییرهای شیمیایی هستند:

  • سوختن انواع سوخت‌ها. مانند بنزین، نفت، گاز طبیعی و… در مجاورت هوا
  • زنگ زدن فلزات
  • گوارش غذا
  • رسیدن میوه
  • پختن غذا
  • فساد مواد
  • سفت شدن تدریجی سیمان
  • انحلال آمونیاک در آب. زیرا در اثر انحلال، قسمتی از مولکول‌های آمونیاک با مولکول‌های آب ترکیب شده و مادهٔ جدیدی به نام هیدروکسید آمونیوم تولید می‌نمایند. به همین دلیل که واکنش شیمیایی بین حلال و حل شونده رخ می‌دهد، حل شدن بیشتر جنبهٔ شیمیایی دارد.
  • لخته شدن مواد کلوئیدی. در اثر لخته شدن پیوندهای جدیدی تشکیل می‌گردد که باعث تجمع مولکول‌های یک محلول کلوئیدی می‌شود.
  • ایجاد گاز (اکسیژن) در اثر حرارت اکسید جیوه

اب اکسیژنه

اب اکسیژنه:

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی مهندسی

هیدروژن پراکسید یا آب‌اکسیژنه (H۲O۲) یک اکسنده متداول است که به عنوان سفیدکننده استفاده می‌شود.آب اکسیژنه برای حذف مواد آلی و معدنی که موجب فاسد شدن آب استخر می‌شوند بکار میرود. هیدروژن پراکسید ساده‌ترین پراکسید است (پراکسیدها ترکیباتی هستند که دارای یک پیوند یگانه اکسیژن-اکسیژن هستند). آب اکسیژنه خالص H۲O۲ یک مایع ناروانی است که کمی آبی رنگ می‌باشد و با زحمت زیاد می‌توان آن را تهیه نمود. آب اکسیژنه‌ای که در داروخانه‌ها به اسم آب اکسیژنه رقیق فروخته می‌شود محلولی است از آب اکسیژنه در آب که %۳ آن آب اکسیژنه است، مانند آب بی‌رنگ و بی‌بو است، مزه تلخی دارد و کمی اسیدی است. این مایع اکسیدکننده‌ای قوی است.

هیدروژن پروکسید
نام‌گذاری آیوپاکhydrogen dioxide
دیگر نام‌هاDioxidane
شناساگرها
شماره ثبت سی‌ای‌اس۷۷۲۲-۸۴-۱ 
پاب‌کم784
کم‌اسپایدر763 
UNIIBBX060AN9V 
شمارهٔ ئی‌سی231-765-0
شمارهٔ یواِن2015 (>60% soln.)
2014 (20–60% soln.)
2984 (8–20% soln.)
KEGGD00008 
ChEBICHEBI:16240 
ChEMBLCHEMBL۷۱۵۹۵ 
IUPHAR ligand2448
شمارهٔ آرتی‌ئی‌سی‌اسMX0900000 (>90% soln.)
MX0887000 (>30% soln.)
کد اِی‌تی‌سیA01AB02,D08AX01 (WHO)‎ S02AA06 (WHO)‎
جی‌مول-تصاویر سه بعدیImage 1
SMILES OO
InChI InChI=1S/H2O2/c1-2/h1-2H 
Key: MHAJPDPJQMAIIY-UHFFFAOYSA-N InChI=1/H2O2/c1-2/h1-2H
Key: MHAJPDPJQMAIIY-UHFFFAOYAL
خصوصیات
فرمول مولکولی2(HO)
جرم مولی34.0147 g/mol
شکل ظاهریVery light blue color; colorless in solution
بویslightly sharp
چگالی1.110 g/cm3 (20 °C 30-percent)
1.450 g/cm3 (20 °C pure)
دمای ذوب−۰٫۴۳ درجه سلسیوس (۳۱٫۲۳ درجه فارنهایت؛ ۲۷۲٫۷۲ کلوین)
دمای جوش‎150.2 °C, 423 K, 302 °F
انحلال‌پذیری در آبامتزاج
انحلال‌پذیریsoluble in اتر، الکل
insoluble in petroleum ether
اسیدی (pKa)11.75
ضریب شکست (nD)1.4061
گرانروی1.245 cp(20 °C)
گشتاور دوقطبی2.26D
ترموشیمی
ظرفیت گرمایی
ویژه C
1.267 J/g K (gas)
2.619 J/g K (liquid)
آنتالپی استاندارد
تشکیل ΔfHo298
-4.007 kJ/g
خطرات
MSDSICSC 0164 (>60% soln.)
شاخص ئی‌یو۰۰۸-۰۰۳-۰۰-۹
طبقه‌بندی ئی‌یوOxidant (O)
Corrosive (C)
Harmful (Xn)
کدهای ایمنیR۵, R۸, R20/22, R۳۵
شماره‌های نگهداری(S1/2), S۱۷, S26, S۲۸, S36/37/39, S45
لوزی آتشNFPA 704 four-colored diamond OX
نقطه اشتعالNon-flammable
LD501518 mg/kg
ترکیبات مرتبط
ترکیبات مرتبطWater
ازن
هیدرازین
دی‌سولفید هیدروژن
به استثنای جایی که اشاره شده‌است در غیر این صورت، داده‌ها برای مواد به وضعیت استانداردشان داده شده‌اند (در 25 °C (۷۷ °F)، ۱۰۰ kPa)
 ✔ (بررسی) (چیست: ✔/؟)
Infobox references

تجزیه این ماده باعث ایجاد رادیکالهای OH می‌شود که بیش از چند ثانیه در دسترس نمی‌باشند و در این مدت با خاصیت شدید اکسیدکنندگی خود، مواد آلی و معدنی را اکسید می‌کند.

خصوصیات آب اکسیژنه

به مرور آب اکسیژنه تجزیه و تبدیل به آب و اکسیژن می‌گردد. این عمل تجزیه در محیط بازی سریعتر و در محیط اسیدی کندتر از محیط خنثی صورت می‌گیرد. همچنین در نور یا گرما تجزیه می‌شود بنابراین باید در ظرف کدر و دور از گرما نگهداری شود. اگر مدت مدیدی آب اکسیژنه را انبار کنند، ممکن است کاملاً تجزیه و تبدیل به آب گردد. بر اثر گرد بعضی اجسام عمل تخریب آب اکسیژنه تسریع می‌گردد مانند گرد دی‌اکسید منگنز و گرد فلزات.

اگر بر روی محلول آب قدری از اجسام پایدارکننده مانند اسید فسفریک، اوره، اسید بنزوئیک و نظیر آن‌ها بیفزایند، عمل تخریب بسیار کند می‌گردد. آب اکسیژنه اثر میکروب کشی ، بوبری و سفیدکنندگی دارد چنانکه اگر یک تکه کالباس قرمز را درون ظرف محتوی آب اکسیژنه قرار دهیم پس از چند روز محتویات ظرف کاملاً بی‌بو است و بوی گندیده نمی‌دهد. آب اکسیژنه رنگها را نیز تخریب می‌کند به همین دلیل تکه کالباس درون ظرف بعد از مدتی بی‌رنگ می‌شود.

موارد استعمال آب اکسیژنه

لکه شراب قرمز، خون، قهوه و غیره را هم می‌توان به وسیلهٔ آب اکسیژنه پاک نمود. محلول غلیظ H۲O۲ به عنوان یک اکسیدان برای سوخت موشک‌ها نیز مورد استفاده قرار می‌گیرد. برخی از خمیر دندانها و سایر اجسامی که برای پاک کردن دندانها بکار می‌رود در موقع استعمال تولید آب اکسیژنه می‌کنند و اکسیژن این آب اکسیژنه دندان را سفید می‌نماید.

آب اکسیژنه در بی‌رنگ کردن شاخ، پشم گوسفند، پنبه، کتان، کنف، کاه، چوب، کاغذ، روغن، چربی، واکس، صابون، ابریشم، عاج، پر و غیره بکار می‌رود. رنگ بعضی لکه‌های صورت را هم آب اکسیژنه تخریب می‌کند. اگر موی سیاه را پس از شستن با کربنات سدیم (تا چربی آن برطرف شود) در محلول آب اکسیژنه بگذارند به رنگ روشن در می‌آید. اگر موی سیاه سر را با مخلوطی از ۱۰۰ گرم آب اکسیژنه ۳۰٪ و چهار قطره محلول ۲۵٪ آمونیاک تر نمایند و پس از ۱۰ تا ۲۰ دقیقه با آب خالص و سپس با محلول اسید استیک‌دار بشویند، بور مایل به قرمز می‌شود. وجود آمونیاک از این جهت لازم است که آب اکسیژنه در حضور قلیاییها سریعتر اکسیژن می‌دهد و در نتیجه موها تندتر بور می‌شوند. مصرف مکرر آب اکسیژنه برای مو مضر است زیرا که مو را شکننده می‌نماید. در جنگ جهانی دوم آب اکسیژنه ۸۵٪برای اکسیداسیون سریع الکل در زیر دریاییها و موشک‌ها مصرف می‌کردند.

هیدروژن پراکسید در سلول‌های جانوری و گیاهی نیز تولید می‌شود، در اندامکی به نام پراکسی زوم، چون پراکسید هیدروژن تولید شده ماده‌ای سمی است توسط آنزیم کاتالاز به سرعت بسیار بالا به آب H2O و اکسیژن O2 تجزیه می‌شود تاهم سمیتش از بین برود و هم به لیپیدهای تولید شده توسط اندامک شبکه آندوپلاسمی آسیبی نرساند.

کاربرد در پزشکی

آب اکسیژنه در گذشته به دلیل خاصیت ضدعفونی‌کننده آن در پانسمان زخمهای عفونی استفاده می‌شد ولی امروزه به دلیل آسیبی که به بافت‌های مجاور وارد می‌کند دیگر در پانسمان استفاده نمی‌شود و فقط گاه برای ضدعفونی لوازم یا سطوح استفاده می‌شود. از آنجایی که آب اکسیژنه بوبر است گاه در درمان زخمهای بدبو مورد استعمال قرار می‌گیرد. در قرصهای اریتزون ۳۶٪ آب اکسیژنه به ۶۴٪ اوره متصل است و چون این قرصها را در دهان بگذارند، اکسیژن می‌دهد. پس هم میکروبهای دهان را می‌کشد و هم دندانها را سفید می‌نماید. آب اکسیژن رقیق را برای قرقره کردن هم بکار می‌برند.,و در ساختن داروهای سرما خوردگی تأثیر دارد

کاربرد در بهداشت استخرها

آب اکسیژنه برای حذف مواد آلی و معدنی که موجب فاسد شدن آب استخر می‌شوند بکار می‌رود. تزریق این عنصر قبل از دستگاه UV باعث ایجاد رادیکالهای OH می‌شود که بیش از چند ثانیه در دسترس نمی‌باشند و در این مدت با خاصیت شدید اکسیدکنندگی خود، مواد باقی‌مانده آلی و معدنی را تجزیه می‌کند. بدین ترتیب نیاز به تعویض آب استخرها کاهش می‌یابد.

در صورتی که از آب اکسیژنه در آب استخرها استفاده شود دارای مزایا به شرح زیر است: ۱. آب اکسیژنه موجود در آب با دوز صحیح، برای شناگر غیرقابل تشخیص است. ۲. با آب به خوبی مخلوط می‌شود، غیر فرار است و تا زمان اکسید کردن مواد آلی در آب باقی می‌ماند. ۳. خالص است و ایجاد املاح نمی‌کند. ۴. خورنده نیست و در نتیجه به تجهیزات و تأسیسات آسیب نمی‌رساند. ۵. ایجاد کف نمی‌کند، بی‌بو و بی طعم است. ۶. غیر سمی است ۷. ایجاد رسوب نکرده و در نتیجه آب کاملاً شفاف می‌ماند.

شناسایی آب اکسیژنه

در یک لوله آزمایشی که قبلاً چند سانتی‌متر مکعب محلول بی‌کرمات پتاسیم و قدری اسید سولفوریک رقیق ریخته‌ایم آب اکسیژنه می‌افزاییم در نتیجه رنگ آبی تند که بعداً تبدیل به سبز می‌شود، ظاهر می‌گردد. به همین طریق می‌توان وجود آب اکسیژنه را در اریتزون ثابت نمود.

تهیه آب اکسیژنه در صنعت با روش خود اکسایش

در این فرایند یکی از مشتقات آتراکینون مانند ۲-اتیل انتراکوینون بر اثر واکنش با هیدروژن در مجاورت کاتالیزور پالادیوم به آنتراهیدروکینون تبدیل می‌شود. با عبور هوا از ماده اخیر، محلول پراکسید هیدروژن ۲۰ درصد وزنی بدست می‌آید.

Hydrogen peroxide production with the Riedl-Pfleiderer process process

گریدهای هیدروژن پراکسید (آب اکسیژنه):

هیدروژن پراکسید (آب اکسیژنه) با توجه به نیازهای متفاوت آن در صنایع مختلف، به چند دسته تقسیم‌بندی می شود:

گرید دارویی (Pharmaceutical Grade) – هیدروژن پراکسید ۳ درصد

این گرید را می توان از داروخانه به جهت تمیز کردن زخم ها و ضد عفونی کردن لوازم خانه تهیه کرد. این درجه از ماده به طور کلی حاوی تثبیت کننده است.

گرید آرایشگر (Beautician Grade) – غلظت معمولاً ۳ تا ۱۲ درصد

این گرید به عنوان سفید کننده و تقوییت کننده مو به کار برده می شود.

گرید معرف (Reagent Grade) – غلظت معمولاً ۳۰ درصد

این گرید در آزمایش های علمی، تحقیقاتی، و پژوهشی است و از آن جایی که حاوی لرزشگیر است، در واکنش های مختلف شیمیایی استفاده می شود.