آنالیز SEM

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

آنالیز SEM : میکروسکوپ الکترونی روبشی 

آنالیز SEM یکی از خدمات آنالیز بسیار پر کاربرد در خانواده روش های میکروسکوپی می باشد. مهمترین کاربرد آنالیز SEM بررسی و مطالعه مورفولوژی و سطح مواد می باشد. دلیل اصلی ابداع میکروسکوپ SEM قدرت تفکیک کم میکروسکوپ های نوری به دلیل طول موج بالای نور مرئی مورد استفاده در آنها بود. قدرت تفکیک کم باعث می شود جزییات ریز و نانومتری قابل مشاهده نباشد.

درآنالیز SEM به جای نور از الکترون ها برای تشکیل تصویر استفاده می شود. مزیت دیگری که SEM دارد این است که برخلاف نور که طول موج ثابتی دارد، طول موج الکترون ها با تغییر شتاب و سرعت آنها قابل تغییر است به این مفهوم که اپراتور بر حسب نوع نمونه و ویژگی های آن می تواند با تغییر شتاب الکترون، قدرت تفکیک های متفاوتی را برای دستیابی به جزییات بیشتر ایجاد کند. الکترون ها در تفنگ الکترونی گسیل حرارتی (Thermal emission) تولید می شوند.

در این نوع تفنگ الکترونی از یک سیم داغ تنگستنی به عنوان منبع تولید الکترون استفاده می‌شود. زمانی که فلزات تا دمای بالایی داغ می‌شوند از خود الکترون ساطع می‌کنند. در تفنگ الکترونی مورد استفاده در این میکروسکوپ الکترونی، الکترون‌های خارج شده از فیلامان (سیم نازک) تنگستنی با استفاده از میدان الکترونی جمع آوری می‌شود و با میدان الکتریکی دیگری به آن شتاب داده می‌شود تا سرعت الکترون‌ها افزایش یابد.

از آنجاییکه سرعت الکترون ها طبق رابطه دوبروی نسبت عکس با طول موج آنها دارد، شتاب دهی به الکترون ها منجر به کاهش طول موج و همانطور که قبلا توضیح کاهش طول موج باعث بهبود قدرت تقکیک میکروسکوپ و مشاهده جزییات بیشتر در نمونه می شود. در آزمون SEM بیم الکترونی پس از تشکیل در تفنگ الکترونی، از لنزهای مختلف عبور می کنند و در نهایت به نمونه برخورد می کنند.

در اثر این برخورد و انرژی که منتفل می شود، سیگنال هایی به شکل الکترون و امواج الکترومغناطیس از داخل ماده گسیل می شود که مبنای تشکیل تصویر و اطلاعات مختلفی است که در آنالیز SEM قابل استخراج می باشد. بر خلاف میکروسکوپ نوری که جنس عدسی ها شیشه ای است و وظیفه آنها بزرگنمایی می باشد، جنس عدسی ها در میکروسکوپ SEM، سیم پیچ های الکترومغناطیسی است و وظیفه آن نتظیم باریکه الکترونی روی سطح نمونه می باشد. معمولا دو سری عدسی های متمرکز کننده و شیئی در میکروسکوپ های الکترونی استفاده می شود. میکروسکوپ های الکترونی عموما در خلا کار می کنند و وظیفه تشکیل خلا به عهده پمپ های خلا روتاری و نفوذی هست که به سیستم میکروسکوپ متصل هستند.

علاوه بر تصویربرداری، قابلیت دیگر SEM، آنالیز عنصری می باشد. با استفاده از این قابلیت می توان عناصر موجود در نمونه را به صورت نقطه ای، خطی و ناحیه ای شناسایی کرد. مبنای شناسایی عناصر امواج ایکس مشخصه ای است که از داخل ماده گسیل می شود. امواج ایکس مشخصه به دلیل برخورد الکترون ها با نمونه و ایجاد حفره در نمونه، ایجاد می شوند. جای خالی الکترونها، با الکترون هایی از ترازهای بالاتر پر می شوند و تفاوت انرژی ترازهای مختلف، بصورت امواج ایکس مشخصه گسیل می شود.

از آنجایی که فاصله بین ترازهای انرژی در عناصر مختلف منحصر به فرد می باشد، با اندازه گیری انرژی امواج می توان عناصر را شناسایی کرد. به طور کلی آنالیز SEM نسبت به میکروسکوپ الکترونی روبشی گسیل میدانی، قدرت تفکیک کمتری دارد. دلیل این امر گسترده تر بودن سطحی که الکترون از آن خارج می‌شودنسبت به میکروسکوپ‌های الکترونی است که از مکانیزم گسیل میدانی استفاده می‌کنند، است. اما بطور کلی قدرت بزرگ‌نمایی و قدرت تفکیک یک میکروسکوپ الکترونی به عوامل مختلفی مانند مهارت اپراتور، کیفیت لنز‌ها، نوع نمونه و نرم افزار دستگاه وابسته است. معمولا آزمون SEM برای نمونه ها و ذراتی که از ابعاد حدود ۴۰ نانومتر بزرگتر هستند، بسیار مناسب است.

نمونه هایی که برای تصویر برداری در آنالیز SEM استفاده می شوند می بایست رسانای جریان الکتریکی باشند. برای نمونه هایی که رسانا نیستند، معمولا یک لایه از مواد رسانا (معمولا طلا) با استفاده از دستگاه اسپاترینگ (کند و پاش یونی) پوشش داده می شوند. در صورتی که نمونه رسانا نباشد، بیم الکترونی فرودی روی نمونه تجمع پیدا می کند. از آنجایی که بارهای هم نام به یکدیگر نیروی دافعه وارد می کنند، تجمع الکترون ها روی سطح نمونه باعث انحراف بیم الکترونی فرودی در اثر نیروی الگترومغناطیسی دافعه بین الکترون ها می شود. مرحله دیگر در آماده سازی نمونه های SEM، صاف و صیقلی کردن سطح آن به منظور تصویربرداری با کیفیت بهتر می باشد. این کار با استفاده از سمباده های مختلف انجام می شود.

در ادامه مشخصات دستگاه SEM مورد استفاده در سامانه مهامکس ذکر شده است.  این میکروسکوپ هرچند از تفنگ گسیل حرارتی استفاده می‌کند ولی بخاطر کیفیت ساخت خوب و مهارت اپراتور، توانایی تصویر برداری خوبی دارد. ضمن اینکه مجهز به میز کار (صفحه‌ای که نمونه‌های روی آن قرار می‌گیرند) با ۵ درجه آزادی (در سه راستا قابلیت حرکت و در دو راستا قابلیت چرخش دارد) است. ضمن اینکه این دستگاه مجهر به آشکارساز EDS می باشد که قابلیت آنالیز عنصری را علاوه بر تصویربرداری فراهم می کند.

مشخصات فنی آنالیز SEM

  • مدل دستگاه: SEM FEI Quanta 200
  • محدوده ی بزرگنمایی: ۱۰ تا ۱۰۰۰۰۰ برابر
  • مجهز به  EDX, WDX.
  • محدوده ی وسیعی از محفظه ها و ‍‍‍پایه های نمونه
  • تفنگ الکترون: کاتد گرم شده ی تنگستن
  • تصویربرداری/نقشه برداری: بله
  • حالتهای تغییر وضعیت نمونه: ۵ حالت شامل: جهت (X (50mm، جهت(Y (70mm، جهت (Z(40mm، کج شدن نمونه (Tilt) (˚۵-˚۹۰) و چرخش (˚۳۶۰)
  • عمق نفوذ الکترونها بسته به ولتاژ انتخابی متغیر است و برای حالتهای مختلف عبارت است از : الکترونهای ثانویه (۱-۱۰nm)، الکترونهای برگشتی ((۰.۱-۱µm و اشعه X (1-10 µm)
  • مجهز به دوربین عکاسی دیجیتال
  • طیف سنج اشعه X
  • مجهز به میکروسکوپ نوری با قدرت تفکیک  ۱µm، بزرگنمایی حداکثر ۳۰۰ برابر و محدوده ی دیدی به قطر ۰.۶۵mm

توانایی ها آنالیز SEM

  • رزولوشن: ۳nm at 30 kV
  • بررسی ساختارهای میکروسکوپی در بزرگنمایی بالا به روشهای B.S و SE
  • تعیین جنس و ضخامت انواع پوششها
  • تهبه آنالیز تصویری از سطح نمونه(X-Ray Image)
  • تهیه آنالیز خطی(Line Scan) (عدم استفاده)
  • تنها عنصر سنگین تر از آلومینیوم قابل شناسایی می باشند عناصر غیر قابل شناسایی عبارتند از: H-He-Li-Be-B-C-N-O-F-Ne-Na-Mg-Al

 

آنالیز جذب و دفع با برنامه دمایی

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

آنالیز احیا با برنامه دمایی (TPR)

این آنالیز یکی از پر کابرد ترین آنالیز ها برای بررسی کاتالیست ها می باشد که بر مبنای عبور گاز احیا کننده ( هیدروژن یا منواکسید کربن ) از روی نمونه و واکنش آن با اکسیژن های ساختاری آن در حین عملیات حرارت دهی به نمونه می باشد. در نهایت میزان هیدروژن (یا CO) مصرف شده به صورت نموداری بر حسب دما قابل ارائه می باشد.

قابلیت های این آنالیز:

  • ارائه نمودار کیفی میزان مصرف هیدروژن (یا CO) بر حسب دما
  • بررسی مراحل احیا پذیری نمونه ها
  • ارائه میزان کمی مصرف هیدروژن (یا CO)
  • تفکیک پیک ها و ارائه سطح زیر نمودار برای هر پیک

پارامتر های انجام آنالیز:

  • انجام عملیات گاز زدایی برای خالص سازی نمونه ها
  • نرخ حرارت دهی: 1 تا 100 درجه بر دقیقه
  • گاز احیا کننده: H2 یا CO
  • حداکثر دمای عملیاتی: 1000 درجه سانتیگراد
  • فشار عملیاتی: 1 اتمسفر

نمونه ایی از آنالیز انجام شده توسط دستگاه را در زیر مشاهده می نمایید.

TPR

برای ارائه درخواست انجام این آنالیز بر روی اینجا کلیک نمایید.

آنالیز دفع با برنامه دمایی (TPD)

این آنالیز نیز از پر کابرد ترین آنالیز ها برای بررسی کاتالیست ها می باشد که بر مبنای جذب گاز مورد نظر ( برای مثال آمونیاک) بر روی نمونه در دمای خاص و سپس دفع آن در محیط گاز هلیم در حین عملیات حرارت دهی به نمونه می باشد. در نهایت میزان گاز دفع شده از روی نمونه به صورت نموداری بر حسب دما قابل ارائه می باشد. رایج ترین گازها برای انجام این تست آمونیاک، مونواکسید کربن، دی اکسیدکربن و هیدروژن می باشد.

قابلیت های این آنالیز:

  • ارائه نمودار کیفی میزان مصرف گاز بر حسب دما
  • بررسی کمی و کیفی سایت های اسیدی و بازی نمونه ها توسط گاز آمونیاک و مونواکیسد کربن
  • تفکیک پیک ها و ارائه سطح زیر نمودار برای هر پیک

پارامتر های انجام آنالیز:

  • انجام عملیات گاز زدایی برای خالص سازی نمونه ها
  • نرخ حرارت دهی: 1 تا 100 درجه بر دقیقه
  • گاز مورد استفاده: NH3, CO, CO2, H2
  • حداکثر دمای عملیاتی: 1000 درجه سانتیگراد
  • فشار عملیاتی: 1 اتمسفر

نمونه ایی از آنالیز انجام شده توسط دستگاه را در زیر مشاهده می نمایید.

TPD

برای ارائه درخواست انجام این آنالیز بر روی اینجا کلیک نمایید.

آنالیز اکسیداسیون با برنامه دمایی (TPO)

این آنالیز برای بررسی میزان سوختن نمونه در محیط اکسیژن می باشد. در نهایت میزان مصرف اکسیژن توسط نمونه به صورت نموداری بر حسب دما قابل ارائه می باشد. گازهای اکسیژن و هوا برای انجام این تست مورد استقاده قرار می گیرند.

قابلیت های این آنالیز:

  • ارائه نمودار کیفی میزان مصرف اکیسژن بر حسب دما
  • ارائه میزان کمی برای مصرف اکسیژن
  • ارائه سطح زیر نمودار برای هر پیک

پارامتر های انجام آنالیز:

  • انجام عملیات گاز زدایی برای خالص سازی نمونه ها
  • نرخ حرارت دهی: 1 تا 100 درجه بر دقیقه
  • گاز مورد استفاده: O2, Air
  • حداکثر دمای عملیاتی: 1000 درجه سانتیگراد
  • فشار عملیاتی: 1 اتمسفر

راه های مقابله با عصبانیت

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

10 راه کنترل عصبانیت

 

براي اينکه بتوانيد عصبانيت خود را کنترل کنيد به اين 10 توصيه توجه کنيد.


بعد از يک روز کاري سخت و پرمشغله و کلي سر و کله زدن با کارمندان و مشتريان ماشين خود را روشن مي‌کنيد تا به خانه برگرديد، اما ترافيک سنگين خيابان، آن‌قدر عصباني‌تان مي‌کند که مدام با دست روي فرمان ماشين مي‌کوبيد و فرياد مي‌زنيد. گاهي هم دست‌تان را روي بوق گذاشته و مي‌خواهيد هر طور که شده و از هر راهي از ترافيک فرار کنيد. تازه اين بخشي از داستان است. وقتي به خانه مي‌رسيد با کلي عصبانيت در را به هم مي‌کوبيد و بر سر همسر و فرزندتان هم داد مي‌زنيد. اما بدانيد که کنترل بد عصبانيت نه تنها موجب ناراحتي اطرافيان‌تان مي‌شود بلکه مي‌تواند سلامت شما و روابط کاري‌تان و ارتباطات‌تان را هم به خطر بيندازد.

1- ورزش کنيد.

فعاليت جسمي به شما کمک مي‌کند که عصبانيت شما طول ‌مدت کوتاه‌تري داشته باشد. با افزايش توان جسمي قدرت غلبه شما بر عصبانيت بيشتر مي‌شود.

2- شروع به نوشتن کنيد.

کلماتي که موقع عصبانيت بيان مي‌کنيد را روي کاغذ بنويسيد و سعي کنيد ديگر هنگام مشاجره و عصبانيت آنها را تکرار نکنيد.

3- يک لحظه تفکر کنيد.

در مراحل شديد عصبانيت بهتر است از مواجهه با فردي که از دست او عصباني هستيد دور شويد و در مقابل او قرار نگيريد. به جاي اين چند لحظه به خود فرصت بدهيد تا آرام شده و در مورد روش‌هاي ابراز عصبانيت کمي فکر کنيد.

4- خشم‌تان را خالي نکنيد.


اين يک باور غلط اجتماعي است که مي‌گويند بيرون ريختن غضب و خشم و عصبانيت هميشه بهترين راه احساس راحتي است. خالي کردن خود با فرياد و عصبانيت مي‌تواند باعث بروز مشکلات بيشتر شود به جاي اينکه آنها را حل کند. اين کار مي‌تواند روابط بين افراد را بدتر کرده و شيوه خوبي براي الگو بودن براي کودکان نيست.

 

5 -حرف بزنيد به جاي داد زدن.


در مورد چيزي که داريد مي‌گوييد کمي فکر کنيد و صداي‌تان را بلند نکنيد. در مورد چيزي که شما را عصباني کرده با آرامي توضيح دهيد. سعي کنيد قبل از اينکه پاسخ بدهيد به آنچه فرد مقابل‌تان هم مي‌گويد گوش کنيد.

 

 

6- تنوع را فراموش نکنيد.


اگر مي‌بينيد که ترافيک و شلوغي خيابان‌ها شما را عصباني مي‌کند، از وسيله ديگري به غير از اتومبيل خود براي رفت و آمد استفاده کنيد يا اگر امکان دارد مکان شغل خود را نزديک محل زندگي‌تان انتخاب کنيد.

 

7-به فوايد و مضرات عصبانيت فکر کنيد.


بعد از اينکه عصبانيت‌تان فروکش کرد با خود فکر کنيد اين عصبانيت چه فوايدي براي من و فرد مقابل داشت؟ آسيب‌ها و اثرات منفي آن روي من و ديگري چه‌قدر بود؟ آيا مشکل را برطرف کرد؟

 

8- از مهارت حل مشکل استفاده کنيد.


با خود فکر کنيد و راه‌حل‌هاي ديگري را به غير از عصبانيت براي حل مشکل پيدا کنيد.

 

 

9 -موقعيت را بپذيريد.


برخي چيزها را نمي‌توان تغيير داد. گاهي بايد به جاي عصباني شدن وضعيت کنوني را پذيرفت و با آن سازگاري پيدا کرد. در اين صورت لازم است شيوه‌هاي مقابله با مشکلات را ياد گرفته و يا آنها سازگار شويد.

10- به سلامت خود بينديشيد.


عصبانيت موجب افزايش هورمون استرس و عصبانيت در بدن شما مي‌شود که اين خود موجب افزايش فشار خود شما مي‌شود. پس بگذاريد با آرامش مشکلات برطرف شود، چرا که عصبانيت‌هاي طولاني مدت و شديد سلامت قلب شما را هم به خطر مي‌اندازد.

شیمی چسب

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

دید کلی


ساخت و مصرف چسب از گذشته رایج بوده است. در قدیم ، از موادی چون قیر و صمغ درختان به عنوان  چسب استفاده می‌کردند. در تمام قرون گذشته و همچنین قرن نوزدهم چسب‌ها منشاء حیوانی و یا گیاهی داشته‌اند. چسب‌های حیوانی بطور عمده بر مبنای کلوژن مامالیام Mammaliamبودند که پروتئیناصلی پوست ، استخوان و رگ و پی است و چسب‌های گیاهی از نشاسته و دکسترین دانه‌های گندم ، سیب زمینی و برنج تهیه می‌شدند. 

 

کاربردهای متنوع چسب‌

از قرن نوزدهم بتدریج با پیدایش چسب‌های سنتتیک ساخته شده در صنعت پلیمر ،  چسب‌های سنتی و گیاهی و حیوانی از صحنه خارج شده است. صنعت چسب به صورت گسترده ای در حال رشد می‌باشد و تعداد محدودی وسایل مدرن ساخت بشر وجود دارد که از چسب در آنها استفاده نشده است. در اتصالات اغلب وسایل از یک جعبه بسیار ساده غلات گرفته تا هواپیمای پیشرفته بوئینگ 747 از چسب استفاده شده است.

امکانات بشر می‌تواند بوسیله چسب‌ها اصلاح گردد. این مطلب ، شامل استفاده از سیمان‌های سخت شده توسط UV در دندانپزشکی و سیمان‌های پیوند آکلریلیک در  جراحی استخوان می‌باشد. پیشرفت جدیدی که اخیرا در کاربرد چسب حاصل گشت، اتصال ریل‌های فولادی و تراموای جدید شهر منچستر بود. چسب‌ها نه تنها برای موادی که بایستی چسبانده و بهم پیوسته شوند، بلکه در ایجاد چسبندگی برای موادی از قبیل جوهر تحریر ، رنگها و سایر سطوح پوششی ، وسایل بتونه کاری و وجوه میانی در مواد ترکیبی از قبیل فولاد یا بافت پارچه ، در تایرهای لاستیکی و شیشه‌ یا الیاف در پلاستیک‌ها ضروری هستند. 

 

اجزای تشکیل دهنده چسب‌ها

مواد پلیمری

چسب‌ها ، همگی حاوی پلیمر هستند یا پلیمرها در حین سخت شدن چسب‌ها بوسیله واکنش شیمیایی پلیمر شدن افزایشی یا پلیمر شدن تراکمی حاصل می‌شوند. پلیمرها به  چسب‌ها قدرت چسبندگی می‌دهند. می‌توان آنها را به صورت رشته‌هایی از واحدهای شیمیایی همانند که بوسیله پیوند کووالانسی به هم متصل شده‌اند، در نظر گرفت.

پلیمرها در دماهای بالا روان می‌گردند و در حلال‌های مناسب حل می‌گردند. خاصیت روان شدن آنها در چسب‌های حرارتی و خاصیت حل شوندگی آنها در چسب‌های بر پایه حلال ، یک امر اساسی می‌باشد. پلیمرهای شبکه‌ای در صورت گرم شدن جریان نمی‌یابند، ممکن است در حلال‌ها متورم گردند، ولی حل نمی‌شوند. تمامی چسب‌های ساختمانی ، شبکه‌ای هستند، زیرا این مورد خزش (تغییر شکل تحت بار ثابت) از بین می‌برد. 

افزودنیهای دیگر

بسیاری از چسب‌ها ، علاوه بر مواد پلیمری دارای افزودنیهایی هستند از قبیل:


مواد پایدار کننده در برابر تخریب توسط اکسیژن و UV. 

مواد نرم کننده که قابلیت انعظاف را افزایش می‌دهد و دمای تبدیل شیشه‌ای (Tg ) را کاهش می‌دهد.

مواد پر کننده معدنی که میزان انقباض در سخت شدن را کاهش می‌دهد و خواص روان شدن را قبل از سخت شدن تغییر می‌دهد و خواص مکانیکی نهایی را بهبود می‌بخشد.

انواع چسب‌ها

چسب‌هایی که توسط واکنش شیمیایی سخت می‌شوند

چسب‌های اپوکسیدی

اپوکسیدها، بهترین نوع چسب‌های شناخته شده ساختمانی هستند و بیشترین کاربرد را دارند. رزین اپوکسی که اغلب در حالت معمول استفاده می‌شود، معمولاً دی گیلیسریل اتراز بیس فنل DGEBA)A) نامیده می‌شود و به وسیلهٔ واکنش نمک سدیم از بیس فنل A با اپی کلروهیدرین ساخته می‌شود. آمین‌های آروماتیک و آلیفاتیک به عنوان عامل سخت‌کننده استفاده می‌شوند. این چسب‌ها به چوب، فلزات، شیشه، بتن، سرامیک‌ها و پلاستیک‌های سخت به خوبی می‌چسبند و در مقابل روغن‌ها، آب، اسیدهای رقیق، بازها و اکثر حلال‌ها مقاوم هستند؛ بنابراین کاربرد بیشتری در چسباندن کفپوش‌های وینیلی در سرویس‌ها و مکان‌های خیس و به سطوح فلزی دارند.

چسب‌های فنولیک برای فلزات

وقتی که فنل با مقدار اضافی فرمالدئید تحت شرایط بازی در محلول آبی واکنش کند، محصول که تحت عنوان رزول شناخته شده و الیگومری شامل فنل‌های پلدار شده توسط اتروگرومتیلن روی حلقه‌های بنزن می‌باشد، بدست می‌آید. برای جلوگیری از تشکیل حفره‌های پر شده از بخار، اتصالات چسب‌های فنولیک تحت فشار، معمولاً بین صفحات پهن فولادی گرم شده توسط پرس هیدرولیک سخت می‌شوند. به دلیل شکننده بودن فنولیکها، پلیمرهایی از جمله پلی وینیل فرمال، پلی وینیل بوتیرال، اپوکسیدها و لاستیک نیتریل اضافه می‌شود تا سخت‌تر گردند.

چسب‌های تراکمی فرمالدئید برای چوب

تعدادی از چسب‌های مورد استفاده برای چوب نتیجه تراکم فرمالدئید با فنول و رزوسینول (۱و۳ دی هیدروکسی بنزن) هستند. بقیه با اوره یا ملامین متراکم می‌شوند.

چسب‌های آکریلیک

چسب‌های ساختاری شامل منومرهای آکریلیک توسط افزایشی رادیکال آزاد در دمای محیط سخت می‌شوند. منومر اصلی، متیل متاکریلات (MMA) می‌باشد، اما موارد دیگری از قبیل اسید متاکریلات برای بهبود چسبندگی به فلزات به وسیلهٔ تشکیل نمک‌های کربوکسیلات و بهبود مقاومت گرمایی و اتیلن گلیکول دی متیل اکریلات برای شبکه‌ای کردن نیز ممکن است مورد استفاده قرار گیرد.

کلروسولفونات پلی اتیلن، یک عامل سخت‌کننده لاستیک است و کیومن هیدورپراکساید و N,N دی متیلن آنیلین، اجزاء یک آغازگر اکسایشی- کاهشی هستند. پیوند دهنده‌هایی که برای اتصالات محکم مصنوعی به استخوان‌های انسان و پوشش‌های چینی برای دندان‌ها استفاده می‌شود نیز بر مبنای MMA هستند و بطورکلی برای چسباندن فلزات، سرامیک‌ها، بیشتر پلاستیک‌ها و لاستیک‌ها استفاده می‌شود و اتصالات پرقدرتی را ایجاد می‌کنند.

چسب‌های غیر هوازی

چسب‌های غیر هوازی در غیاب اکسیژن که یک بازدارنده پلیمر شدن است، سخت می‌گردد. این چسب‌ها اغلب بر پایه دی متاکریلات‌هایی از پلی اتیلن گلیکول هستند. کاربرد این چسب‌ها، اغلب در محل اتصال چرخ دنده‌ها، تقویت اتصالات استوانه‌ای و برای درزگیری می‌باشد.

چسب‌های پلی سولفیدی

پلی سولفیدها در ابتدا به عنوان دزدگیر استفاده می‌شدند و یک کاربرد مهم دزدگیری لبه‌های آینه‌های دوبل می‌باشد. هر دو برای اینکه واحدها را باهم نگه دارند و مانعی در برابر نفوذ رطوبت ایجاد کنند. آن‌ها به وسیله بیس (۲- کلرواتیل فرمال) با سدیم پلی سولفید تهیه می‌شوند و به منظور کاهش قیمت از پرکننده‌های معدنی استفاده می‌شود. به عنوان نرم‌کننده، از فتالات‌ها و معرف‌های جفت‌کننده سیلانی استفاده می‌شود و عامل سخت‌کننده آن‌ها شامل دی‌اکسید منگنز و کرومات هستند.

سفت شدن لاستیکی چسب‌های ساختمانی

بسیاری از چسب‌های ساختمانی، پلیمرهای لاستیکی حل شده‌ای در خودشان دارند. وقتی که چسب‌ها سخت می‌شوند، لاستیک به صورت قطراتی با قطر حدود ۱µm رسوب می‌کند. لاستیک‌های استفاده شده در این روش شامل پلی وینیل فرمال (pvf) و پلی وینیل بوتیرال (PVB) هستند که هر دو به وسیلهٔ واکنش آلدئید مناسب با پلی وینیل الکل ساخته می‌شوند.

سیلیکون‌ها

چسب‌های یک جزئی سیلیکون اغلب به چسب‌های ولکانیزه شونده در دمای اتاق (rtv) معروفند و شامل پلی دی متیل سیلوکسان (PDMS) با جرم‌های مولکولی در محدود ۱۶۰۰–۳۰۰ با گروه‌های انتهای استات، کتوکسیم یا اتر هستند. این گروه‌ها توسط رطوبت اتمسفر، هیدرولیز شده، گروه‌های هیدروکسیل تشکیل می‌دهند که بعداً با حذف آب متراکم می‌شوند.

چسب‌های سیلیکونی نرم و مطلوب هستند و دارای مقاومت محیطی و شیمیایی خوبی هستند. این چسب‌ها به عنوان بهترین پوشش برای استفاده در حمام شناخته شده‌اند.

چسب‌هایی که بدون واکنش شیمیایی سخت می‌شوند

این چسب‌ها شامل سه نوع زیر می‌باشند

چسب‌هایی که در اثر حذف حلال سخت می‌شوند

◦چسب‌های تماسی: چسب‌های تماسی احتمالاً از معروف‌ترین چسب‌ها بر پایه حلال هستند. این‌ها محلول‌هایی از پلیمر در حلال آلی هستند که در دو سطح بکار می‌روند تا متصل شوند. ماده اصلی این چسب‌ها، لاستیک پلی کلروپرن (پلی کروپرن، پلی کلرو بوتادین) است و برای چسباندن روکش‌های تزئینی و پلاستیک‌های محکم دیگر مثل ABS, DVC به چوپ و محصولات فلزی و چسب‌های تماسی DIY برای تخت کفش بکار می‌روند.

◦چسب‌های پمادی: چسب‌های بر پایه حلال مشهور که در ظروف پماد مانند به عموم فروخته می‌شوند، اغلب محلول‌هایی از لاستیک نیتریل (همی‌پلیمر یا بوتادین و آکریلونیتریل) در حلال‌های آلی هستند.

چسب‌هایی که با از دست دادن آب سخت می‌شوند

◦محلول‌های آبی و خمیرها: نشاسته، ذرت و غلات، منابع عمده برای استفاده چسب هستند. موارد مصرف عمده برای چسباندن کاغذ، مقوا و منسوجات می‌باشد. کاربردهای آن شامل صفحات موجدار، پاکتهای کاغذی، پنجرگیری تیوپ، چسباندن کاغذ دیواری و چسب‌های تر شدنی مجدد با آب می‌باشد. چسب‌های تر شدنی توسط آب شامل پلی (وینیل الکل) (DVOH) که در تمبرهای پُستی مورد استفاده قرار می‌گیرند و از لاتکس صمغ‌های طبیعی (مثلاً صمغی و دکسترین) و پلی وینیل استات (DVN) همراه با مقدار زیادی DVOH پایدارکننده تولید می‌شوند. DVOH تنها پلیمرمعروفی است که از منومر خودش ساخته نمی‌شود.

◦امولسیون‌های آبی: اجزا ترکیبی برای پلیمریزه شدن امواسیونی عبارتند از: آب، منومرها، پایدارکننده‌ها و آغازگر. محصول پلیمر شدن امولسیونی، شیرابه‌ای از ذرات پلیمر با پایدارکننده‌های جذب شده می‌باشد. معروف‌ترین مثال، چسب چوب DIY است که شیرآبه آن، شامل پلیمر پلی وینیل استات (DVA) است و به میزان زیادی در کارهای کارگاهی و در چسباندن اتصالات تاق و زبانه برای درها، پنجره‌ها و مبلمان در کارخانه‌ها استفاده می‌شود و مثال دیگر در رنگ‌های امولسیونی بر پایه DVA هستند که برای پوشش سطح یا به عنوان چسب استفاده می‌شود.

چسب‌هایی که به وسیله سرد کردن سخت می‌شوند

◦چسب‌های ذوبی: به نام چسب حرارتی هم شناخته می‌شوند که نوعی چسب از نوع ترموپلاست است. ترموپلاست یا پلاستیک حرارتی یا گرمایشی یک ماده پلاستیکی و یک پلیمر است که در یک درجه حرارت خاص ذوب و قابل انعطاف شده و پس از خنک شدن سفت می‌شود. ماده اولیه چسب‌های ذوبی که از ابزار تفنگ شکلی خارج می‌شود، معمولاً اتیلن وینیل استات (EVA) می‌باشد. کاربرد این چسب‌ها شامل استفاده در کاردستی‌ها، جعبه‌های مقوایی، صفحه کتاب، اتصالات حرارتی و نئوپان می‌باشد. چسب ترموپلاستی حدود سال ۱۹۴۰ توسط شرکت Procter & Gamble اختراع شد. در آن زمان چسب‌هایی که برای بسته‌بندی‌ها استفاده می‌شدند بر پایهٔ آب طراحی شده بودند و در اثر رطوبت چسبندگی خود را از دست می‌دادند؛ لذا چسب‌های حرارتی به عنوان راه حلی برای این موضوع به کار گرفته شدند. از دیگر چسب‌های ذوبی می‌توان چسب‌های ذوبی پلی آمیدی، پلی اورتان، استرهای آلیفاتیک، پلی استر اشاره کرد. چسب‌های حساس به فشار چسب‌های حساس به فشار، دائماً چسبناک باقی می‌مانند و به خاطر استفاده در نوار چسب‌ها و برچسب‌ها معروف هستند. این چسب‌ها به‌طور عمده بر پایه لاستیک طبیعی، همی پلیمر دسته‌ای و تصادفی، استیرن – بوتادین و آکریلیک هستند. PVC نرم شده و پلی اتیلن، مواد نوار معمولی هستند. یک طرف نوار با یک آستری یا لایه زیری پوشیده شده‌است. به همین دلیل، چسب دائماً چسبناک می‌ماند و طرف دیگر، دارای پوشش آزادکننده‌ای است که وقتی که نوار باز می‌شود، با چسب جدا می‌گردد. مواد آزادکننده که اغلب استفاده می‌شود، همی پلیمری از وینیل الکل و وینیل اکتادسیل کاربامات است که در اثر واکنش با DVOH با اکتادسیل ایزوسیانات ساخته می‌شود.

روغن‌هاي روان‌كننده

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

بخش پایانی

 

  1. حذف موم

گام بعدي در توليد روغن روان‌كننده حذف مواد مومي به منظور بهبود مشخصات سياليت در دماهاي پايينتر مي‌باشد. براي مثال متيل اتيل كتون با روغن حاوي موم مخلوط مي‌شود. اين مخلوط را تا حدود 10 الي 20 درجة فارنهايت سرد مي‌كنند. اين دما، دماي نقطة ريزش نرمال است. كريستال‌هاي مومي تشكيل شده از نفت توسط فيلتر جداسازي مي‌شوند.

  1. فرايند پاياني

برخي از پايه روغن‌ها كه به اين مرحله مي‌رسند، به خصوص پايه روغن‌هاي با كيفيت مرغوب، نيازمند فرايند پاياني از قبيل hydrofinishing يا خالص‌سازي از طريق خاك رس براي بهبود رنگ، پايدار در مقابل اكسيد شدن، و پايداري در مقابل حرارت مي‌باشند. hydrofinishing شامل عبور روغن داغ شده همراه با هيدروژن روي بستر كاتالستي است. اين فرايند پايه‌هاي رنگي و تركيبات ناپايدار از قبيل نيتروژن و تركيبات گوگرددار موجود در پايه روغن را حذف مي‌كند.

فرايند ديگر، خالص‌سازي توسط خاك رس است. اين فرايند نيز مشابه فرايند قبل مجموعة رنگي و تركيبات ناپايدار را حذف مي‌كند.

علاوه بر فرايند hydrofinishing، فرايندهاي هيدروژني بسيار ديگر نيز استفاده مي‌شود. فرايند فوق گاهي اوقات قبل از استخراج از طريق حلال صورت مي‌گيرد. هدف از اين كار افزايش بازده فرايند استخراج است. زيرا در اين روش آروماتيك‌هايي در فاز extract باقي مي‌ماند، تبديل به مولكول‌هاي غير آروماتيك مي‌شوند كه در فاز raffinate هستند. اين فرايند معمولاً باعث گوگردزدايي و نيتروژن‌زدايي از روغن مي‌شود.

  1. راه ديگر دستيابي به روغن روان‌كننده استفاده از فرايندهاي مشكل هيدروژني به نام هيدروكراكينگ است. در اين فرايند ساختار بسياري از مولكول‌ها كه در خوراك وجود دارد تغيير مي‌كند. آروماتيك‌ها به نفتين‌ها تبديل مي‌شوند. حلقه‌هاي نفتيني شكسته مي‌شوند و بسياري از مولكول‌هاي پارافيني بازآرايي يا شكسته مي‌شوند. اين بازآرايي در روغن مولكول‌هايي به وجود مي‌آورد كه مشخصات ويسكوزيته بر روي دما، پايداري در مقابل حرارت و اكسيد شدن را افزايش مي‌دهد. اين فرايند قابليت توليد روغن‌هاي روان‌كننده با كيفيت بالا از نفت خام را افزايش مي‌دهد.

جدول صفحة بعد مشخصات نهايي پايه روغن‌هاي نفتي حاصل از فرايندهاي فوق را نشان مي‌دهد كه از نفت‌هاي خام مختلف به دست آمده‌اند.

 

Specific Gravity at 60°F

Sulfur (% wt)

Viscosity Index

Kinematic Viscosity (cSt)

Pour Point (°C)

COC Flash (°C)

at 40°C

at 100°C

Source 1

100 Neutral

0.860

0.065

101

20.39

4.11

-13

192

200 Neutral

0.872

0.096

99

40.74

6.23

-20

226

350 Neutral

0.877

0.126

97

65.59

8.39

-18

252

650 Neutral

0.882

0.155

96

117.90

12.43

-18

272

150 Bright
Stock

0.895

0.263

95

438.00

29.46

-18

302

Source 2

150 Neutral

0.861

0.036

98

24.38

4.55

-23

210

250 Neutral

0.872

0.055

96

48.96

6.94

-21

238

600 Neutral

0.878

0.099

95

108.00

11.64

-23

262

150 Bright
Stock

0.892

0.147

95

473.00

30.90

-15

294

Source 3 (Hydrotreated)

100 Neutral

0.868

0.018

100

25.18

4.66

-20

200

200 Neutral

0.869

0.012

101

39.78

6.19

-21

216

500 Neutral

0.869

0.015

105

89.37

10.78

-21

254

Source 4

100 Neutral

0.862

0.278

107

21.26

4.28

-16

186

200 Neutral

0.877

0.571

103

30.53

5.26

-13

194

500 Neutral

0.888

0.729

98

95.48

10.89

-10

244

600 Neutral

0.891

0.760

96

111.80

11.99

-13

258

150 Bright
Stock

0.903

0.843

96

477.80

30.99

-13

290

توجه به نكات عملي زير به منظور كاهش تغييرات و توليد محصولات را كيفيت بالا و كارايي ثابت ضروري است.

  1. انتخاب و درجه‌بندي نفت خام
  1. جداسازي برش‌هاي مشابه با نقاط جوش مشابه
  2. انجام فرايندها جهت حذف اجزاء نامطلوب و ارتقا به مواد مطلوبتر
  3. مخلوط كردن براي به دست آوردن خواص فيزيكي مورد نياز و به كارگيري افزودني‌هاي شيميايي براي افزايش كارايي روغن
پايه مصنوعي روغن

منبع ديگر ،سيالات روان‌كنندة توليد شده از مواد مصنوعي است. تعريف مناسب اين مواد به شرح زير است.

محصولي كه از واكنش شيميايي مواد با جرم مولكولي پايينتر براي ساخت سيالي با جرم مولكولي بالاتر تهيه مي‌شود به طوري كه داراي يك سري خواص قابل پيش‌بيني باشد. اين دقيقاً در مقابل روغن پايه نفتي است كه از مجموعه‌اي از تركيبات با تركيب درصدهاي شيميايي مختلف تشكيل شده است.

از بين مزيت‌هاي روغن‌هاي مصنوعي در مقابل روغن‌هاي پايه نفتي مي‌توان به موارد زير اشاره كرد.
  • پايداري گرمايي و مقاومت در برابر اكسيد شدن
  • مشخصات ويسكوزيته به دماي مطلوب پايينتر
  • خواص بهتر در دماهاي پايين
  • خواص اصطكاكي بهتر
روان‌كننده‌هاي مصنوعي تجاري تنها به يك نوع شيميايي محدود نشده است. پر كاربردترين روان‌كننده‌هاي مصنوعي به شرح زير‌اند.
  • اولفين اوليگومر: وسايل نقليه و مصارف صنعتي
  • نئو پنتيل پلي ال استرها: وسايل نقليه و مصارف هواپيمايي
  • استرهاي با دو عامل اسيدي: وسايل نقلية و صنايع هواپيمايي
  • آروماتيك‌هاي قليايي.

اين چهار نوع از روغن‌هاي مصنوعي مصارفي در وسايل نقليه پيدا كرده‌اند. آن‌ها را يا به تنهايي استفاده مي‌كنند يا با روغن‌هاي پايه نفتي مخلوط مي‌كنند.

 

Fluid

Dynamic Viscosity (cP) at -40°F

Kinematic Viscosity (cSt)

Viscosity Index

Pour Point (°C)

COC Flash (°C)

Temperature Range (°C)

at 40°C

at 100°C

Olefin Oligomer

2371

18.12

3.96

126

-79

221

-65 to 232

Olefin Oligomer

8176

34.07

6.00

134

-68

243

-65 to 232

Ester of Dibasic Acid — Dioctyl Sebacate

3450

119.58

76

-51

232

-54 to 204

Ester of Trimethylol — Propane (C7)

2360

15.00

3.50

< -51

232

-59 to 280

Alkylated Aromatics

9047

29.37

5.10

119

-54

224

-40 to 177

 

به طور كلي روغن‌هاي مصنوعي را مي‌توان در بازة دمايي بزرگتري نسبت به روغن‌هاي پايه نفتي با همان ويسكوزيته استفاده كرد. گروه خاصي از روان‌كننده‌هاي مصنوعي را مي‌توان با روان‌كننده‌هاي پايه نفتي مخلوط كرد تا به خواص مورد نياز از قبيل فراريت، دماي بالا، و مشخصات ويسكوزيته دماي پايين دست يافت.

 

  1. خواص روان‌كننده‌ها ونقش افزودني‌ها

بعضي از خواص مهم و ضروري براي كارايي و عملكرد رضايت‌بخش روان‌كننده‌ها به شرح زير مي‌باشد.

  1. فراريت پايين تحت شرايط عملياتي، فراريت، و يك روغن روان‌كننده فقط به نوع انتخاب روغن پايه نفتي براي يك نوع خاصي از خدمات بستگي دارد و نمي‌توان آن را با مواد افزودني بهبود داد.
  1. خواص مناسب براي سيال در بازة دمايي مورد استفاده. خواص سيال به طور عمده به انتخاب نوع پايه روغن بستگي دارد. هر چند اين خواص را مي‌توان با استفاده از كاهش دهنده‌هاي نقطة ريزش و يا بهبود دهنده‌هاي ويسكوزيته ارتقا داد.
  2. پايداري بالا و يا توانايي حفظ خواص مورد نظر براي يك بازة زماني مشخص تا حدودي به نوع پايه روغن بستگي دارد. اما مواد افزودني هم در تعيين خواص مؤثر هستند. به علاوه، پايداري روان‌كننده‌ها به محيطي كه در آن كار مي‌كنند نيز بستگي دارد. عواملي از قبيل دما، توانايي اكسيدشدن، و آلودگي توسط آن و يا باقي‌ماندة سوخت حاصل از احتراق ناقص، و اسيدهاي خورنده عمر مفيد روان‌كننده‌ها را كاهش مي‌دهند. در اين حالت افزودني‌ها سهم عمده‌اي در ارتقاي كيفيت و افزايش عمر مفيد روان‌كننده‌ها ايفا مي‌كنند.
  3. سازگاري با ديگر مواد موجود در سيستم مانند كاسه‌نمد، بلبرينگ‌ها، صفحه‌كلاج و … نيز ممكن است تا حدودي متأثر از نوع روغن پايه نفتي باشد. اما افزودني‌هاي شيميايي بيشترين تأثير را در اين مورد دارند.

افزودني‌ها را مي‌توان به عنوان موادي كه در به وجود آوردن خواص جديد روغن‌هاي روان‌كننده نقش دارند به چند دستة مهم تقسيم كرد. هدف از معرفي آن‌ها ارائة توضيح كامل در مورد علم مربوط به اين مواد نيست. بلكه هدف تنها ارائة يك ديد كلي، هم در زمينة شيمي و هم در زمينة نحوة عملكرد آن‌ها مي‌باشد.

افزودني‌هاي پايه به روغن‌هاي روان‌كنندة موتور در ادامة مقاله مورد بررسي قرار خواهند گرفت.

كاهش‌دهنده‌هاي نقطة ريزش

اين كاهش‌دهنده‌ها از ماسيدگي روغن در دماهاي پايين جلوگيري مي‌كند. اين پديده به دليل كريستال شدن مواد پارافيني مومي است كه در برش‌هاي نفت خام وجود دارد. براي دستيابي به نقطة ريزش پايين طي پالايش در فرايندي به نام موم‌زدايي، موم موجود در روغن را كه در دماهاي بالا جامد است جدا مي‌كنند. جداسازي كامل موم‌ها از روغن بازده اقتصادي آن را كم مي‌كند. بنابراين براي كامل كردن اين فرايند از افزودني‌هايي استفاده مي‌شود كه نقطة ريزش روغن را كاهش مي‌دهند.

 

بهبود دهنده‌هاي ويسكوزيته

همان طور كه قبلاً گفته شد، شاخص ويسكوزيتة يك روغن به وسيلة به كار گيري نوع خاصي از مواد بهبود مي‌يابد كه خواص ويسكوزيته در برابر دما را افزايش مي‌دهد. در دماهاي بالا مشخص مي‌شود كه شاخص ويسكوزيتة روغن روان‌كننده بهبود يافته يا خير. اين امر را مي‌توان از طريق كاهش شيب خطوط در نمودارهاي ويسكوزيته دماي استاندارد ASTM تشخيص داد.

بهبود دهنده‌هاي وسيكوزيته عموماً پليمرهاي قابل حل در روغن با وزن مولكولي بين 10000 تا 1 ميليون هستند. مولكول‌هاي پليمري بعد از انحلال در روغن به وسيلة مولكول‌هاي روان‌كننده پر مي‌شوند. حجم اجزاء بزرگ شده مقدار تأثير هر پليمر در افزايش ويسكوزيته را نشان مي‌دهد. دماهاي بالاتر باعث افزايش بيشتر حجم پليمر و تأثير بيشتر پليمر در «غلظت» روغن است. از اين رو روغن در دماهاي بالاتر عموماً كمتر آبكي شدن تمايل دارد.

كاركرد اين پليمرها به پايداري در مقابل شكستن، مقاومت در برابر برش‌هاي مكانيكي، و پايداري گرمايي و شيميايي آن‌ها بستگي دارد. اين موارد براي ارتقاي ويسكوزيته مورد توجه قرار مي‌گيرد. به عنوان مثال، پايداري در مقابل شكست اين پليمرها با افزايش وزن مولكولي كاهش مي‌يابد. كاهش در شكسته شدن پليمرها در افزايش ويسكوزيتة روغن تأثيرگذار است. از طرف ديگر، با افزايش وزن مولكولي همان نوع پليمر، غلظت روغن افزايش مي‌يابد.

بايد نوعي تعادل بين اين دو خاصيت به وجود آورد كه با در نظر گرفتن پايداري در مقابل شكست روغن در شرايط واقعي كار موتور، مقدار ويسكوزيتة مورد نياز تعيين مي‌گردد.

 

افزودني‌هاي ضد فرسايش

ساييدگي يا فرسايش، از بين رفتن فلز در اثر تغيير فاصلة بين سطوحي است كه مرتباً روي هم حركت مي‌كنند. اگر اين روند ادامه پيدا كند، باعث كاركرد بد تجهيزات مي‌شود. از بين عوامل اصلي فرسايش فلز مي‌توان به تماس بين دو فلز، حضور يك مادة ريز ساينده، و هجوم اسيدهاي خورنده به سيستم اشاره كرد.

تماس فلز با فلز را مي‌توان با اضافه كردن تركيبات ورقه‌اي (فيلمي) شكل از بين برد. اين تركيبات از طريق جذب فيزيكي يا واكنش شيميايي از سطح فلز محافظت مي‌كنند. دي‌تيوفسفات روي به طور گسترده‌اي براي اين منظور استفاده مي‌شود. از ديگر افزودني‌هاي مؤثر مي‌توان به مواد حاوي فسفر، گوگرد، يا تركيبات اين دو اشاره كرد.

فرسودگي و سايش فلزات را مي‌توان از طريق پاكسازي (تصفيه) هواي ورودي به موتور و تصفية روغن در حال گردش در موتور كاهش داد.

اسيدهاي تشكيل شدة موجود در محصولات حاصل از احتراق منجر به فرسايش فلزات مي‌گردند. اين نوع فرسايش را مي‌توان با استفاده از مواد افزودني با خاصيت قليايي از قبيل پنتان و سولفونات‌ها برطرف كرد.

 

  1. افزودني‌هاي جلوگيري كننده از اكسيد شدن و خوردگي

ضد اكسيد شونده‌ها در روغن از اكسيداسيون آن در معرض اكسيژن جلوگيري مي‌كنند. اين مواد راديكال‌هاي آزاد را با شكستن زنجيره‌ها نابود مي‌كنند يا بر روي پراكسيدهاي درگير در مكانيسم اكسيد شدن تأثير مي‌گذارند. از ميان پر كاربردترين آن‌ها مي‌توان به گونه‌هاي فنولي يا دي‌تيو فسفات‌هاي روي اشاره كرد.

خوردگي قطعات فلزي بيشتر به دليل واكنش با اكسيدهاي قطعات فلزي است. اين اسيدهاي هم از محصولات احتراق ناقص محفظة احتراق در هنگام كار موتور توليد مي‌شوند و هم از اكسيد شدن روغن روان‌كننده. ضد اكسيد شونده‌ها آشكارا اين تمايل را كاهش مي‌دهند. دترجنت‌ها مي‌توانند خوردگي قطعات را توسط خنثي كردن اسيدها كاهش دهند. از ديگر ضد اكسيد شونده‌ها مي‌توان به دي‌تيو فسفات‌هاي روي اشاره كرد كه نه تنها خاصيت ضد زنگ دارند، بلكه يك لاية محافظ روي قطعات به وجود مي‌آورند. اين لايه از تماس مستقيم اسيد با قطعات جلوگيري مي‌كند.

 

منبع:

http://www.lubrizol.com

http://www.lubrizol.com

Encyclopedia of chemical technology (Kirk othmer, 3rd edition, volume 17)

www.chemgiude.ca.uk

www.Chemlocud.com

کربن مونوکسید

کربن مونوکسید:

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی مهندسی

کربن مونوکسید (به انگلیسی: Carbon monoxide)، (با فرمول شیمیایی CO)،گازی است که بر اثر سوختن ناقص کربن به وجود می‌آید. این گاز بسیار سمی است اما رنگ و بوی خاصی ندارد. به همین دلیل کربن مونوکسید قاتل نامرئی نامیده می‌شود. میل ترکیبی کربن مونوکسید با هموگلوبین خون حدود ۲۰۰ برابر بیشتر از میل ترکیب گاز اکسیژن است. در خون انسان حدود ۵ درصد کربن مونوکسید وجود دارد اما اگر این مقدار به ۲۰ درصد برسد باعث مرگ خواهد شد.

کربن مونوکسید
Preferred IUPAC nameCarbon monoxide
دیگر نام‌هاCarbon monooxide
Carbonous oxide
Carbon(II) oxide
Carbonyl
شناساگرها
شماره ثبت سی‌ای‌اس۶۳۰-۰۸-۰ 
پاب‌کم۲۸۱ 
کم‌اسپایدر۲۷۵ 
UNII7U1EE4V452 
شمارهٔ ئی‌سی211-128-3
شمارهٔ یواِن1016
KEGGD09706 
MeSHCarbon+monoxide
ChEBICHEBI:17245 
شمارهٔ آرتی‌ئی‌سی‌اسFG3500000
مرجع بیلشتین3587264
مرجع جی‌ملین421
جی‌مول-تصاویر سه بعدیImage 1
SMILES [C-]#[O+]
InChI InChI=1S/CO/c1-۲ 
Key: UGFAIRIUMAVXCW-UHFFFAOYSA-N InChI=1/CO/c1-۲
Key: UGFAIRIUMAVXCW-UHFFFAOYAT
خصوصیات
فرمول مولکولیCO
جرم مولی28.010 g/mol
شکل ظاهریcolourless gas
بویodorless
چگالی789 kg/m3 liquid
1.250 kg/m3 at 0 °C 1 atm
1.145 kg/m3 at 25 °C 1 atm
دمای ذوب−۲۰۵٫۰۲ درجه سلسیوس (−۳۳۷٫۰۴ درجه فارنهایت؛ ۶۸٫۱۳ کلوین)
دمای جوش‎−191.5 °C, 82 K, -313 °F
انحلال‌پذیری در آب27.6 mg/1 L (25 °C)
انحلال‌پذیریsoluble in کلروفرم، استیک اسید، اتیل استات، اتانول، هیدروکسید آمونیوم، بنزن
ضریب شکست (nD)1.0003364
گشتاور دوقطبی0.122
ترموشیمی
آنتروپی مولار
استاندارد So298
198 J·mol−1·K−1
آنتالپی استاندارد
تشکیل ΔfHo298
−110.5 kJ·mol−1
خطرات
MSDSICSC 0023
شاخص ئی‌یو۰۰۶-۰۰۱-۰۰-۲
طبقه‌بندی ئی‌یوHighly flammable (F+)
Very toxic (T+)
کدهای ایمنیR۶۱ R۱۲ R۲۶ R48/23
شماره‌های نگهداریS53 S45
لوزی آتشNFPA 704 four-colored diamond
نقطه اشتعال−191 درجه سلسیوس (82.1 کلوین؛ −311.8 درجه فارنهایت)
دمای خودآتشگیری609 درجه سلسیوس (882 کلوین؛ 1128 درجه فارنهایت)
ترکیبات مرتبط
مرتبط با carbon oxidesکربن دی‌اکسید
کربن سابوکسید
Oxocarbon
به استثنای جایی که اشاره شده‌است در غیر این صورت، داده‌ها برای مواد به وضعیت استانداردشان داده شده‌اند (در 25 °C (۷۷ °F)، ۱۰۰ kPa)
 ✔ (بررسی) (چیست: ✔/؟)
Infobox references

تأثیر کربن مونوکسید بر انسان

۱۱۲/۸ پیکومتر فاصلهٔ میان کربن و اکسیژن است.

وقتی کربن مونوکسید وارد سیستم تنفسی شخصی شود بلافاصله با گلبول‌های قرمز شخص وارد واکنش شده و باعث می‌شود که اکسیژن کمتری به اعضای بدن برسد که اولین عارضه این مسئله در ابتدا سوزش چشم‌ها و پس از سپری شدن زمانی بین ۱ الی ۲ ساعت بسته به غلظت گاز کربن مونواکسید موجود در مکان فرد احساس خواب آلودگی و خستگی مفرط می‌کند. در این حالت اعضای بدن گِزگِز کرده و اگر بدن شخص حساس باشد دچار خونریزی بینی می‌شود. اگر شخص سعی کند سرپا بایستد دچار سرگیجه به همراه حالت تهوع شده و چشم‌ها در این حالت اغلب سیاهی می‌رود. در ادامه ممکن است شخص دچار بیهوشی شود. البته روند تمام این عوامل بستگی دارد به شرایط فیزیکی بدن فرد و شرایط محل سکون و البته عواملی از جمله شرایط زندگی فرد مورد نظر از جمله سیگاری بودن محیط کاری و … که باعث تغییر در عملکرد ریه‌ها و سایر نقاط بدن بستگی دارد اما باز هم نتایج و روند مسمومیت در افراد مختلف با تمام شرایط بالا باز هم متغیر است و حتمی نیست. احتیاط را همیشه به خاطر داشته باشید. بعضاً دیده و شنیده‌هایی حاکی از اقدام عمدی افراد در معرض خطر مسمومیت ثابت کرده که دلایلی از جمله خود کشی با این گاز به ثبت رسیده پس اگر فرزند برادر خواهر یا هر فردی که دلایل یا شرایط نابهنجاری را تجربه کرده‌اند در گروه مسمومیت یا مرگ ناشی از استشمام این گاز قرار دارند. این افراد را تنها رها نکنید و سرکشی و مراقبت را فراموش نکنید. فرتور شبیه‌سازی شدهٔ سه‌بُعدی.

یکی از نشانه‌های مسمومیت با کربن مونوکسید این است که وقتی شخص محیط خود را تغییر می‌دهد بهبود یافته و در قرار گرفتن مجدد در محیط دچار حالات قبلی می‌گردد. اگر غلظت کربن مونوکسید در خون بیشتر از ۳۰ درصد شود ضربان قلب شخص نیز افزایش می‌یابد. در غلظت‌های بیش از ۴۰ درصد اختلالت حرکتی، سرگیجه، کاهش حافظه و ناتوانی در حرکت اندام‌ها می‌شود.

تمامی وسایل و دستگاه‌هایی که وظیفه سوزاندن چیزی را به عهده دارند (مانند یک بخاری گازی یا نفتی، یک آب‌گرم‌کن یا حتی موتور یک خودرو) تا حدودی مونواکسیدکربن تولید می‌کنند، میزان این تولید به شرایط احتراق (سوختن) بستگی دارد؛ هرچه میزان اکسیژن در هنگام سوختن کمتر باشد بخش بیشتری از کربن‌ها دچار ناقص سوزی می‌شوند و به جای دی‌اکسید کربن (CO۲) مونواکسیدکربن (CO) تولید می‌کنند.

افرادی که در یک فضای سربسته در معرض استنشاق این گاز قرار می‌گیرند ابتدا احساس کرختی و خواب آلودگی می‌کنند و در صورتی که هرچه سریعتر مکان را ترک نکنند یا هوای تازه تنفس نکنند دچار بیهوشی و در نهایت خفگی می‌شوند.

برای دوری از خطرات همین گاز است که مدام توصیه می‌شود برای بخاری‌های گازی منازل حتماً از دودکش‌های H استفاده شود.

کربن مونوکسید از هوا سبکتر است و در قسمت‌های فوقانی محل‌های سرپوشیده بیشتر تجمع می‌کند. در کربن مونوکسید یک پیوند سه‌گانه کربن را به اکسیژن متصل می‌نماید که طول آن حدود ۱۱۲/۸ پیکومتر است.

پادزهر سم مونوکسید کربن

محققان در آزمایشگاه با استفاده از نوروگلوبین پادزهری برای مقابله با این سم ساختند. نوروگلوبین پروتئینی که معمولاً در مغز و شبکیه چشم یافت می‌شود. این پروتئین به وسیله اتصال اکسیژن و نیتریک اکسید از سلول‌ها در برابر آسیب‌ها دفاع می‌کند. این آزمایش روی موش‌ها با موفقیت اجرا شد. در این مطالعه که روی موش شد، دسته‌ای از نوروگلوبین‌ها تغییر یافته‌ای که اتصال با CO آن‌ها ۵۰۰ بار قوی‌تر از اتصالات هموگلوبین بود را استفاده کردند. مولکول‌های CO-laden از طریق کلیه‌ها دفع می‌شدند. به گزارش این گروه، در طی ۵ دقیقه که موش در معرض این سم کشنده بود، نوروگلوبین تا ۸۷ درصد موجب نجات موش شد. با این حال، مسمویت مونوکسید کربن یک سری مسیرهای ایمنولوژیکی را فعال می‌کند که موجب آسیب‌های شدید به سیستم‌های قلب و اعصاب می‌شود

نرم افزار اتوکد

پردیس فناوری کیش _ طرح مشاوره متخصصین صنعت ومدیریت _ دپارتمان فناوری اطلاعات وارتباطات

نرم افزار AutoCAD یکی از مهمترین و پرکاربردترین نرم افزارهای طراحی های دو و سه بعدی و همچنین ترسیم فنی است.

در واقع، وجود عبارت CAD در نام این نرم افزار مخففی است از عبارت Computer Aided Design به معنی طراحی به کمک نرم افزار است.

البته در منابع مختلف دیگر CAD را بعنوان کلمه اختصاری عبارت Computer Aided Drafting و به معنای ترسیم فنی به کمک نرم افزار نیز معرفی کرده اند. به زبان ساده بگویم، بجای اینکه یک شی را با خط کش یا دست بکشید، با اتوکد همان را بصورت دقیق و سریع، با رایانه ترسیم می کنید.

آیا این نرم افزار در بازار رقیبی دارد؟

بی‌شک پاسخ این سوال «بله» است. یکی از رقیب‌های  اصلی نرم‌افزار اتوکد در بازار، نرم افزار میکرواستیشن می‌باشد.

برنامه اتوکد (به انگلیسی: AutoCAD) نرم‌افزاری برای ترسیم و طراحی حرفه‌ای  نقشه‌های مهندسی و صنعتی است و محصول شرکت آمریکایی اتودسک می‌باشد. جالب اینجاست که کاربران اتوکد امکان استفاده از محیط‌های دو و سه بعدی را نیز دارند.

مزایای استفاده از اتوکد چیست؟

افرادی که مشغول به کار در زمینه معماری، مکانیک یا مهندسی هستند مزایای استفاده از اتوکد را کشف می کنند.ابزارهای طراحی و مستند سازی در AutoCAD نه تنها به حداکثر رساندن بهره وری کمک می کند، بلکه باعث می شود سرعت کارهای طراحی و مستند سازی شما افزایش یابد .

اتوکد کجا استفاده می شود؟

اتوکد توسط متخصصان در بسیاری از صنایع برای انجام هر کاری از جمله طراحی و ساخت نمایشگاه ها گرفته تا ساخت و ساز یک استادیوم که طراحی پیچیده است.

به عنوان مثال استادیوم ملی برزیل؛ یک استادیوم خورشیدی که بیش از ۷۱،۰۰۰ نفر را در خود جای می دهد و برای میزبانی رویدادهای مهم فوتبال مانند جام کنفدراسیون ها، جام جهانی فیفا و کوپا آمریکا مورد استفاده قرار می گیرد.

اتوکد دارای کاربردهای فراوانی است و حتی توسط صنایع فراتر از زمینه های معماری و مکانیکی قدرت گرفته است.

به عنوان مثال : شرکت های سفارش طراحی ممکن است از ابزارهای مدل سازی سه بعدی در AutoCAD برای تبدیل ایده های خلاقانه به طرح های مفهومی مفصل استفاده کنند ، به خاطر اینکه می توانند دقیقا همان چیزی را که تجسم می کنند طراحی کنند .

مثلا شرکت های سفارش طراحی پنجره ، می توانند با سازندگان ساختمان قرارداد داشته باشند و پنجره هایی را که با اتوکد طراحی کرده اند را به صورت یک کتابخانه دسته بندی کنند و در اختیار سازندگان ساختمان قرار دهند و سازندگان نیز با توجه به طراحی ساختمان ، هر نوع از پنجره ای که می خواهند در طراحی ساختمان استفاده کنند .

در مورد شرکت های طراحی و نورپردازی، AutoCAD می تواند با کمک ۳ds Max برای طراحی و نورپردازی سه بعدی استفاده شود و تجسم هایی واقعی و فتورئالستیک برای مشتریان خود فراهم کند.

در نهایت، اتوکد شرکت ها را قادر می سازد تا عملا طراحی و برنامه ریزی مجازی را انجام دهند.

بازار کار اتوکد

 با توجه به اين  که نرم افزارطراحي سه بعدي اتوکد به دليل قابليت هاي بسيار بالايي که در طراحي و به خصوص طراحي هاي سه بعدي دارد کاربرد هاي بسيار زيادي دارد از اين رو  بازار کاراين نرم افزار بسيار پر رونق و رو به رشدي است . 

افرادي که در حوزه کار با نرم افزار طراحي سه بعدي اتوکد از تخصص و تبحر کافي برخوردار باشند مي توانند در بسياري از حوزه ها از قبيلاز طراحي دکوراسيون داخلي ، معماري ، عمران ، طراحي صنعتي و غيره و غيره به فعاليت مشغول شوند.

همچنين متخصصان اتوکد يا همان اتوکد کاران حرفه اي مي توانند با قبول پروژه هاي مختلف به صورت مستقل به کسب درآمد بپردازند و از مزاياي دوره هاي آموزشي اتوکد برخوردار شوند . 

بهترین نرم افزار حسابداری

پردیس فناوری کیش _طرح مشاوره متخصصین صنعت ومدیریت _ دپارتمان فناوری اطلاعات وارتباطات

چرا انتخاب بهترین نرم افزار حسابداری برای سازمان ها امری بسیار حیاتی است ؟ یکی از مهمترین و چالش برانگیزترین جنبه های راه اندازی هر کسب و کار، ثبت اطلاعات مالی، هزینه های ورودی و خروجی و محاسبه سود در هر زمان است. اگر صاحب یک بیزنس استارت آپی هستید، احتمالا مدیریت همه امور اداری و مالی کمی برایتان راحت تر باشد. اما در مورد شرکتهای بزرگتر، حجم بالای صورتحساب ها و داد و ستد در هر دوره می تواند ثبت وقایع مالی تجارت را دشوار کند.

به همین دلیل انتخاب بهترین نرم افزار حسابداری از ابتدا، یکی از ملزومات مدیریتی برای سازمان ها و شرکت هاست. و این بدان معنی است که باید از نرم افزارهای حسابداری کارآمد برای کسب و کار بهره گرفت.

وظیفه نرم افزار حسابداری چیست؟

آنچه که از وظیفه یک نرم افزار حسابداری خوب انتظار می رود، پوشش دادن مدیریت فعالیت های مختلف در بحث مالی و حسابداری شرکت است. معمولا این فعالیت ها به چند دسته مشخص تقسیم می گردد:

  1. بررسی وضعیت کلی
  2. مدیریت دریافتها
  3. مدیریت پرداخت ها
  4. حقوق و دستمزد
  5. گزارش گیری جامع

ویژگی های بهترین نرم افزار حسابداری چیست؟

اهمیت و حساسیت خرید بهترین نرم افزار حسابداری، کمتر از نرم افزار هایی چون CRM نیست. بنابراین برای خرید بهترین نرم افزار حسابداری، توجه به فاکتورهای ویژه ای که به شفافیت هرچه بیشتر وضعیت مالی کمک می کند، خالی از لطف نیست. مهمترین ویژگی های بهترین نرم افزار حسابداری به شرح زیر هستند:

  • کاربری آسان و گرافیک مناسب برای سهولت کارکرد پرسنل
  • داشبورد کامل و جامع برای دسترسی سریعتر و آسانتر
  • قابلیت شخصی سازی بر اساس نیازهای سازمان و تعداد کاربران
  • قابلیت به روز رسانی نرم افزار و استفاده از خدمات پشتیبانی
  • قابلیت گستردن نرم افزار و نصب ماژول های مختلف
  • پوشش دادن کل فعالیت های مورد نیاز امور مالی
  • قابلیت اتصال به سیستم هایی چون نرم افزار CRM
  • امنیت بالای نرم افزار و مقاوم بودن در برابر هک شدن
  • قابلیت گزارش گیری با امکان تعیین سطوح دسترسی مختلف

چه نرم افزار حسابداری مناسب شرکت ما است؟

شما یا شرکت و کسب و کار کوچک و متوسط (sme) هستید یا شرکت های بزرگ که نیاز به برنامه ریزی منابع انسانی (ERP) و کنترل مالی جامع دارید و معمولا نرم افزار های ORACLE یا SAP‌ مناسب خواهد بود. در هر حال، فهم دقیق از نیازهای سازمانی و انتظارات ثابت و متغیر، در انتخاب یک نرم افزار حسابداری مطلوب تاثیر گذار است.

لیست انواع نرم افزار های حسابداری ایران

ابرستان

تولید: شرکت مهندسی مشاور عصر فن آوری دانش

  • نرم افزاری برای بررسی حساب و کتاب از چک و خزانه گرفته تا دریافت و پرداخت و انبار و گزارش بیمه و دارایی.

محض

تولید: شرکت شبیهسازان منطق

  • این نرم افزار حسابداری محض، ویژه کسب و کارهای سنتی است که امنیت خوبی دارد.

تاویرا

تولید: گروه تاویزا

  • این نرم افزار حسابداری برای کارگاه های تولیدی مناسب بوده و از مدیریت چک تا کنترل هزینه ودریافت و پرداخت را به آسانی انجام میدهد و پشتیانی رایگان دارد.

فرداد

تولید: شرکت آرین سیستم

  • فرداد یک نرم افزار شرکتی است که در اصناف مختلف همچون تولیدی ، خدماتی، بازرگانی و پیمانکاری نرم افزاری یکپارچه عرضه می کند.

 اصناف

تولید کننده: شرکت سازه حساب

  • نرم افزار تخصصی و ویژه اصناف بوده و ارزان است.

شایگان سیستم

تولید کننده: شایگان سیستم

  • نرم افزاری برای مدیریت کلیه عملیات حسابداری و انبارداری و خزانه داری که امکان گزارش گیری متنوع دارد.

کاوش

تولید: شرکت کاوش افزار فردا

  • پاسخ گویی به نیازهای مدیریت مالی مبتنی بر استاندارد های اداره دارایی و بیمه و رابط کاربری آسان.

رایگان فکر

تولید: گروه نرم افزاری فکر

  • پاسخ گویی به نیاز های خرده فروشان و عمده فروشان و مراکز پخش مویرگی و عملیات بازاریابی.

نرم افزار erp آرین سیستم

تولید: شرکت داده پردازی آرین سیستم

  • شرکت آرین سیستم تولید کننده نرم افزار erp است که از سال ۱۳۸۹ محصول ArianERP خود را در صنایع مختلف به بازار ارائه داده است.

نرم افزار جامع حسابداری سود آور

تولید: شرکت فناوری نیکراد

  • سیستم جامع مالی و تجاری تحت WINDOWS که برای استارت آپ ها و کسب و کار های کوچک مفید است.

حسابداری ابری و تحت وب نیکراد

تولید: فناوری نیکراد

  • مدلی جامع برای  اتوماسیون مالی و صنعتی با تکنولوژی تحت وب که فرآیند مدار و توسعه پذیر و مقیاس پذیر می باشد.

حسابداری ابری آمارسین

تولید: شرکت تحقیقات و توسعه داتیس

  • نرم افزار حسابداری ابری آمارسین امکان دسترسی به اطلاعات  را از راه دور فراهن کرده و فضای ابری، سرعت و یکپارچگی خدمات را افزایش می دهد.

 مالیران

تولید: شرکت طراح سیستم

  • در نرم افزار حسابداری مالیران، اسناد حسابداری دستی و منتج از عملیات سایر مدلهای موجود مثل انبار و فروش  و اموال و حقوق  انجام  می شود.

 مدیریت کسب و کار قطره

تولید: شرکت نرم افزاری قطره  ها

  • نرم افزار مدیریت کسب و کار قطره، امکانات مربوط به حسابداری خردو متوسط را در اختیار افراد آماتور قرار می دهد.

تکسان سیستم

تولید: شرک رایان گسترو پیشرو

  • کاربری آسان و مخصوص فروشگاه ها و تولیدی ها و کارگاه های کوچک و متوسط با سرعت بالا.

حساب یار نوین پرداز

تولید: شرکت نوین پرداز

  • ثبت سفارش و چاپ رسید انواع واقسام فعالیت های ویزیتوری و مارکتینگ را میتوان با آن انجام داد.

نرم افزار حسابداری مالی ملک

تولید: شرکت توسعه سیستم های کاربردی و حسابداری ملک

  • برای گزارش گیری دلخواه با قابلیت تعیین سطح دسترسی  برای کاربران در محیط  USER  FRIENDLY

 پاتریس

تولید: شرکت نرم افزار حسابداری پاتریس

  • برای انبار داری  و حسابداری عمومی می توان از این نرم افزار بهره  برد که بخش های تخصصی پخش  و تولید و حقوق و دستمزد را می توان با آن مدیریت کرد.

 حسابداری چند سطحی افرا

تولید:  شرکت افراد سیستم میهن

  • این نرم افزار دارای سطوح مختلف گزارش گیری است.

نرم افزار حسابداری و مدیریت کسب و کار حساب فا

تولید: سیستم های رایانه ای فراگیر

  • نرم افزار حسابداری آنلاین در فضای ابری و تحت  وب که امکان دسترسی  به آن در  هر زمان و مکان وجود دارد.

هیدروکلریک اسید

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی و مهندسی

هیدروکلریک اسید:

هیدروکلریک اسید یک محلول شفاف، بی‌رنگ و با بوی بسیار تند از هیدروژن کلرید (HCl) در آب است. یک اسید معدنی بسیار خورنده و قوی با استفاده‌های صنعتی زیاد است. هیدروکلریک اسید به‌طور طبیعی در اسید معده یافت می‌شود. پی‌اچ (pH) این اسید بین ۰ تا ۲ می‌باشد.

اسید هیدروکلریدریک (PH1)
نام‌گذاری آیوپاکHydrochloric acid
دیگر نام‌هاMuriatic acid Spirit(s) of Salt
شناساگرها
شماره ثبت سی‌ای‌اس۷۶۴۷–۰۱–۰
شمارهٔ آرتی‌ئی‌سی‌اسMW4025000
خصوصیات
فرمول مولکولیHCl in آب (H2O)
جرم مولی36.46 g/mol (HCl)
شکل ظاهریشفّاف و بی‌رنگ تا زرد ِ روشن
liquid
چگالی1.18g/cm3
دمای ذوب−27.32 °C (247 K)
38% solution.
دمای جوش‎110 °C (383 K)
20.2% محلول;
48 °C (321 K)
38% محلول.
انحلال‌پذیری در آبامتزاج‌پذیر.
اسیدی (pKa)−8.0
گرانروی1.9 mPa·s at 25 °C
31.5% محلول
خطرات
MSDSExternal MSDS
طبقه‌بندی ئی‌یو C
کدهای ایمنیR۳۵, R۳۷
شماره‌های نگهداریS26, S۳۶, S45
خطرات اصلیCorrosive
لوزی آتش30 1COR
نقطه اشتعالNon-flammable.
ترکیبات مرتبط
دیگر آنیون‌هاF- Br-I-
مرتبط با اسیدهیدروبرومیک اسید
هیدروفلوئوریک اسید
هیدروژن یدید
سولفوریک اسید
به استثنای جایی که اشاره شده‌است در غیر این صورت، داده‌ها برای مواد به وضعیت استانداردشان داده شده‌اند (در 25 °C (۷۷ °F)، ۱۰۰ kPa)
Infobox references

هیدروکلریک اسید از قدیم به نام‌های اسیدم سالیس، موریاتیک اسید و جوهر نمک معروف بوده و از ویتریول (سولفوریک اسید) و نمک طعام به دست آمد. هیدروکلریک اسید آزاد ابتدا در قرن شانزدهم توسط آندریاس لیباویوس رسماً معرفی شد. بعدتر، توسط شیمیدان‌هایی مثل ژوهان رودولف گلابر، جوزف پریستلی و همفری دیوی در تحقیقات علمی شان مورد استفاده قرار گرفت.

با آغاز تولید گسترده در انقلاب صنعتی، هیدروکلریک اسید در صنایع شیمیایی به عنوان یک واکنش گر ناب در تولید مقیاس بزرگ وینیل کلرید برای پلاستیک وی.وی. سی، و MDI/TDI برای پُلی اُورِتان مورد استفاده قرار گرفت. کاربری‌های زیادتری هم در مقیاس کوچک دارد که شامل خانه‌داری، ساخت ژلاتین و دیگر افزودنی‌های غذایی، رسوب‌زدایی و چرم سازی می‌باشد. حدود ۲۰ میلیون تن از هیدروکلریک اسید سالانه در جهان تولید می‌شود.

همچنین گفته می‌شود جابر بن حیان این اسید را کشف کرده‌است. از این اسید برای جرم‌گیری از سطوح مختلف استفاده می‌شود. هیدروکلریک اسید در معده نیز وجود دارد و به هضم غذا کمک می‌کند. تنفس بخار هیدروکلریک اسید خطرناک است و به دستگاه تنفسی آسیب می‌رساند و اگر قطره‌ای از آن بر روی پوست بدن بچکد تولید تاول و حتی جراحت‌های عمیق می‌کند و در چنین مواردی باید بلافاصله با محلول قلیایی رقیق مانند محلول سودا یا جوش شیرین اثر اسید را خنثی کرد. گفته شده که جابر بن حیان هیدروکلریک اسید و اسیدهای دیگری مانند نیتریک اسید، سیتریک اسید (جوهر لیمو) و استیک اسید (جوهر سرکه) را می‌شناخته و ویژگی‌های آن‌ها را کشف کرده‌است.

وجه تسمیه

هیدروکلریک اسید برای کیمیاگران اروپایی با عنوان جوهر نمک یا اسیدم سالیس (نمک اسید) شناخته شده بود. هر دو نام هنوز هم رایج هستند به خصوص در زبان‌های غیر انگلیسی مثل زبان آلمانی: Salzsäure، زبان هلندی: Zoutzuur، زبان سامی شمالی: Saltsyra و زبان لهستانی: kwas solny. HCl گازی هوای اسید دریایی نامیده می‌شد. نام قدیمی (قبل از نام قاعده دار) موریاتیک اسید نیز ریشهٔ یکسانی دارد و بعضی اوقات به کار می‌رود (موریاتیک یعنی “مربوط به آب نمک یا نمک”).[۱][۲] نام «هیدروکلریک اسید» توسط شیمیدان فرانسوی ژوزف لویی گیلوساک در ۱۸۱۴ ابداع شد.[۳]

تاریخچه

تیزاب سلطانی، مخلوطی از هیدروکلریک اسید و نیتریک اسید، که با حل شدن نشادر در نیتریک اسید تهیه می‌شود، توسط سئودو گبر (جابر بن حیان بدلی)، شیمیدان اروپایی قرن ۱۳ تشریح شد. دیگر مراجع اذعان دارند که اولین اشاره به تیزاب سلطانی در دست خط‌های موجود امپراتوری روم شرقی با تاریخ اواخر قرن سیزدهم یافت شده‌است.[۹][۱۰][۱۱]

هیدروکلریک اسید آزاد اولین بار به صورت رسمی در قرن ۱۶ توسط آندریاس لیباویوس معرفی شده‌است که آن را با گرم کردن نمک در بوته چینی خاک رسی به دست آورد.[۱۲] دیگر نویسندگان ادعا می‌کنند که هیدروکلریک اسید خالص اولین بار توسط کاهن بندیکتی باسیل والنتین آلمانی در قرن ۱۵،[۱۳] با گرم کردن نمک طعام معمولی و آهن(II) سولفات کشف شده‌است.[۱۴] درحالیکه دیگران مدعی اند که هیچ مرجع قابل اعتمادی راجع به اینکه هیدروکلریک اسید خالص تا اواخر قرن شانزدهم به دست آمده باشد، وجود ندارد.[۱۵]

در قرن هفدهم، ژوهان رودولف گلابر از کارل اشتات آم ماین از نمک سدیم کلرید و سولفوریک اسید برای تهیهٔ سدیم سولفات در واکنش مانهایم استفاده کرد که گاز هیدروژن کلرید آزاد می‌کرد. جوزف پریستلی از لیدز انگلستان، هیدروژن کلرید خالص را در ۱۷۷۲ تهیه کرد،[۱۶] و در ۱۸۰۸ همفری دیوی از پزانس انگلستان، ثابت کرده بود که ترکیب شیمیایی شامل هیدروژن و کلر بوده‌است.[۱۷]

همزمان با انقلاب صنعتی در اروپا، تقاضا برای مواد قلیایی افزایش یافت. فرایند جدیدی توسط نیکولاس لبلانک (ایسودان، فرانسه) تولید ارزان قیمت و گستردهٔ سدیم کربنات (جوش شیرین) را ممکن کرد. در این فرایند لبلانک، نمک طعام با استفاده از سولفوریک اسید، سنگ آهک و زغال‌سنگ ضمن آزاد کردن هیدروژن کلرید به عنوان فراوردهٔ جانبی، به جوش شیرین تبدیل می‌شود. تا زمان قانون قلیایی ۱۸۶۳ در برتانیا و قوانین مشابه در دیگر کشورها، HCl اضافی وارد هوا می‌شد. بعد از قانون‌گذاری، تولیدکنندگان جوش شیرین مجبور به انتقال گاز اتلافی به آب و جذب آن در آب شدند تا هیدروکلریک اسید در مقیاس صنعتی تولید کنند.[۱۸]

در قرن بیستم، فرایند لبلانک جای خود را به فرایند سولوای که فراوردهٔ جانبی هیدروکلریک اسید تولید نمی‌کرد و مؤثرتر بود، داد. به خاطر آن که هیدروکلریک اسید همچنان به عنوان یک ماده شیمیایی مهم در کاربردهای متعدد شناخته می‌شد، میل تجاری روش‌های تولید دیگری را نیز موجب شد که برخی همچنان به کار گرفته می‌شوند. بعد از سال ۲۰۰۰، هیدروکلریک اسید بیشتر با جذب هیدروژن کلرید اضافی از تولید ترکیبات آلی صنعتی تولید می‌گردد.[۱۸]

از ۱۹۸۸، هیدروکلریک اسید با عنوان پیشرو در جدول دوم پیمان نامه سازمان ملل علیه خرید و فروش غیرقانونی مواد مخدر و مواد روانگردان در سال ۱۹۸۸ به علت استفاده از آن در تولید و ساخت هروئین، کوکائین و مت آمفتامین ذکر شده‌است.[۱۹]

خواص شیمیایی و واکنش‌ها

هیدروژن کلرید (HCl) اسید تک پروتونی است، به این معنی که می‌تواند فقط یک بار تفکیک شود (مثلاً یونیزه) تا یک یون H+ (یک پروتون تنها) آزاد کند. در هیدروکلریک اسید آبی، H+ به یک مولکول آب می‌پیوندد تا یک یون هیدرونیوم، H3O+ تشکیل دهد:[۲۰][۲۱] HCl + H2O → H3O+ + Cl

دیگر یون تشکیل شده Cl، یون کلرید است؛ بنابراین هیدروکلریک اسید می‌تواند برای تهیه نمک‌های کلرید، مثل سدیم کلرید به کار رود. هیدروکلریک اسید یک اسید قوی است چون در اصل به‌طور کامل در آب تفکیک می‌شود.

اسیدهای تک پروتون دار یک ثابت تفکیک اسیدی، Ka، دارد که نشانگر میزان تفکیک در آب است. برای یک اسید قوی مثل HCl، مقدار Ka بزرگ است. تلاش‌های نظری برای اختصاص یک Ka به HCl انجام پذیرفته‌اند.[۲۲] وقتی نمک‌های کلرید مثل NaCl به HCl آبی اضافه می‌شوند، عملاً تأثیری بر pH ندارند، این یعنی که Cl یک باز مزدوج بسیار ضعیف است و HCl کاملاً در محلول آبی تفکیک شده‌است. برای محلول‌های متوسط تا قوی هیدروکلریک اسید، فرض اینکه مولاریتهی H+ (یک یکای غلظت) دقیقاً برابر با مولاریتهٔ HCl است، با توجه به چهار رقم معنی دار درست است.

از بین شش اسید معروف قوی از اسیدهای معدنی در شیمی، هیدروکلریک اسید، یک پروتون دارد و کمترین تمایل را به شرکت در یک واکنش اکسایش-کاهش دارد. برخلاف اسیدی بودن آن، یکی از کم خطرترین اسیدها برای استفاده است زیرا شامل یون کلرید واکنش ناپذیر و غیر سمی است. محلول‌های نسبتاً قوی هیدروکلریک اسید ضمن نگهداری شان کاملاً پایدار هستند و غلظت آن‌ها در زمان ثابت می‌ماند. این ویژگی‌ها به علاوهٔ این که به عنوان یک واکنشگر ناب خالص در دسترس است، هیدروکلریک را به یک واکنش گر اسیدی عالی مبدل می‌سازد.

هیدروکلریک اسید یک اسید مطلوب در تیتراسیون برای تعیین مقدار بازها است. تیترانت‌های اسید قوی نتایج دقیق تری به خاطر نقطه پایانی متمایزشان می‌دهند. آزئوتروپ یا (محلول نقطه جوش ثابت) هیدروکلریک اسید (تقریباً ۲۰٫۲٪) را می‌توان به عنوان استاندارد اولیه در تحلیل‌های کمی به کار برد اگرچه، غلظت دقیق آن به فشار جوی که در آن تهیه شده‌است، بستگی دارد.[۲۳]

استفاده از هیدروکلریک اسید در شیمی تجزیه برای تهیه محلول‌ها (ی “ساده”) جهت تجزیه بسیار رایج است. هیدروکلریک اسید غلیظ گاز هیدروژن، کلریدهای فلز اکسید شده و فلزهای زیادی را در خود حل می‌کند و با ترکیب‌های بازی مثل سدیم کربنات یا مس (II) اکسید واکنش داده و کلریدهای حل شده‌ای را ترکیب می‌کند که قابل تحلیل هستند.

خواص فیزیکی

غلظتچگالیغلظت مولارپی‌اچگرانرویظرفیت گرماییفشار بخارنقطه جوشدمای ذوب
kg HCl/kgkg HCl/m3Baumékg/Lmol/dm3mPa•skJ/(kg•K)kPa°C°C
۱۰٪۱۰۴٫۸۰۶٫۶۱٫۰۴۸۲٫۸۷−۰٫۵۱٫۱۶۳٫۴۷۱٫۹۵۱۰۳−۱۸
۲۰٪۲۱۹٫۶۰۱۳۱٫۰۹۸۶٫۰۲−۰٫۸۱٫۳۷۲٫۹۹۱٫۴۰۱۰۸−۵۹
۳۰٪۳۴۴٫۷۰۱۹۱٫۱۴۹۹٫۴۵−۱٫۰۱٫۷۰۲٫۶۰۲٫۱۳۹۰−۵۲
۳۲٪۳۷۰٫۸۸۲۰۱٫۱۵۹۱۰٫۱۷−۱٫۰۱٫۸۰۲٫۵۵۳٫۷۳۸۴−۴۳
۳۴٪۳۹۷٫۴۶۲۱۱٫۱۶۹۱۰٫۹۰−۱٫۰۱٫۹۰۲٫۵۰۷٫۲۴۷۱−۳۶
۳۶٪۴۲۴٫۴۴۲۲۱٫۱۷۹۱۱٫۶۴−۱٫۱۱٫۹۹۲٫۴۶۱۴٫۵۶۱−۳۰
۳۸٪۴۵۱٫۸۲۲۳۱٫۱۸۹۱۲٫۳۹−۱٫۱۲٫۱۰۲٫۴۳۲۸٫۳۴۸−۲۶
دما و فشار مرجع برای جدول فوق ۲۰˚C و ۱ اتمسفر (101.325 kPa) است. مقادیر فشار بخار از جداول بین‌المللی بحرانی اخذ شده‌اند و همان فشار بخار کل محلول هستند.

دمای ذوب به عنوان یک تابع از غلظت HCl در آب[۲۴][۲۵]

خواص فیزیکی هیدروکلریک اسید، مثل نقطه جوش و دمای ذوب، چگالی و pH بستگی به غلظت یا مولاریته HCl در محلول آبی دارند که از خواص آب در غلظت‌های نزدیک به ۰٪ اسید تا مقادیر بخاری هیدروکلریک اسید در بیش از 40% HCl متغیر هستند.[۲۶]

هیدروکلریک اسید به عنوان مخلوط دوتایی (دو جزئی) از HCl و H2O آزئوتروپ نقطه جوش ثابتی در 20.2% HCl و ۱۰۸٫۶ ˚F (227 ˚F) دارد. چهار نقطه اوتکتیک ثابت بلوری شدن برای هیدروکلریک اسید، بین شکل‌های بلور HCl•H2O (68% HCl), HCl•2H2O (51% HCl), HCl•3H2O (۴۱٪)، HCl•6H2O (25% HCl) و یخ (0% HCl) وجود دارد. هم چنین نقطه ثابت اوتکتیک در ۲۴٫۸٪ بین یخ و بلور HCl•3H2O موجود است.

تولید

هیدروکلریک اسید با حل شدن هیدروژن کلرید در آب تهیه می‌شود. هیدروژن کلرید را می‌توان با روش‌های گوناگونی تولید کرد و این یعنی راه‌های زیادی برای ساخت هیدروکلریک اسید موجودند. تولید مقیاس بزرگ هیدروکلریک تقریباً همیشه با تولید در مقیاس صنعتی دیگر مواد شیمیایی انجام می‌پذیرد.

بازار صنعتی

هیدروکلریک اسید در محلول‌های تا ۳۸٪ از HCl (مقدار غلیظ) تهیه می‌شود. غلظت‌های بیشتر فقط تا ۴۰٪ از نظر شیمیایی قابل تولید هستند، اما نرخ تبخیر از آن به بعد به قدری بالا است که نگهداری و استفاده از آن نیازمند ملاحظات اضافی تری است مثل دمای پایین و فشار بالا. پس میزان عمدهٔ صنعتی آن ۳۰٪ تا ۳۴٪ است که با توجه به حمل و نقل مناسب و اتلاف مادهٔ محدود به علت بخارهای HCl بهینه شده‌است. غلظت‌های بیشتر را به جهت کنترل اتلاف از طریق تبخیر باید فشرده و سرد نمود. در ایالات متحده، محلول‌های بین ۲۰٪ تا ۳۲٪ با نام اسید موریاتیک فروخته می‌شوند. محلول‌های مورد استفاده اغلب برای نظافت خانه‌ها در ایالات متحده، معمولاً ۱۰٪ تا ۱۲٪ هستند که هشدارهای جدی برای رقیق‌تر کردن شان قبل از استفاده دارند. در بریتانیا، که با نام «جوهر نمک» برای نظافت خانگی فروخته می‌شود، قدرت اسید برابر همان مقدار در ایالات متحده است.

تولیدکنندگان بزرگ جهانی شامل شرکت داو کمیکال ۲ میلیون تن در سال از HCl گازی، شرکت جرجیا گالف، شرکت توسوه، آکزونوبل و تساندرلو بین ۰٫۵ تا ۱٫۵ میلیون تن در سال تولید دارند. تولید کل جهان، که برای استفاده‌های آماری بر اساس میزان HCl توصیف شده‌است، حدود ۲۰ میلیون تن در سال تخمین زده می‌شود که ۳ میلیون تن از طریق تولید مستقیم و مابقی از طریق استفاده از ترکیب‌های آلی و مشابه و تولید فراوردهٔ ثانوی تأمین می‌گردند. تا کنون، غالب هیدروکلریک اسید منحصراً توسط تولیدکننده مصرف می‌شود. میزان آن در بازار آزاد جهانی ۵ میلیون تن در سال تخمین زده می‌شود.

اسیدشویی فولاد

یکی از مهم‌ترین استفاده‌های هیدروکلریک اسید در اسیدشویی فولاد است تا زنگ یا اکسید آهن را از روی آهن یا فولاد قبل از ورود آن‌ها به واکنش‌های بعدی مثل اکستروژن، نورد، “گالوانی کردن و دیگر تکنیک‌ها، بزداید. HCl در کیفیت فنی با غلظت معمولاً ۱۸٪ رایج‌ترین عامل اسیدشویی برای اسیدشویی فولادهای کربنی است. Fe2O3 + Fe + 6 HCl → 3 FeCl2 + 3 H2O

اسید مصرف شده استفادهٔ بسیاری در محلول‌های کلرید آهن (II) (هم چنین معروف به فررو کلرید) دارد اما مقادیر بالای فلزات سنگین در مایع اسیدشویی این عملیات را با مشکل مواجه کرده‌است.

صنعت اسیدشویی فولاد فرایندهای بازسازی هیدروکلریک اسید را بهبود بخشیده‌است، مثل فرایند بازسازی HCl سرخ‌کنندهٔ اسپری یا بستر سیال که بازیافت HCl را از مایع اسیدشویی مصرف شده ممکن می‌سازد. رایج‌ترین فرایند بازسازی فرایند پیروهیدرولیز طی واکنش زیر است: 4 FeCl2 + 4 H2O + O2 → 8 HCl+ 2 Fe2O3

با بهبودی اسید مصرف شده یک حلقه اسیدی بسته ساخته می‌شود. فراوردهٔ جانبی اکسید آهن (II) از واکنش بازسازی باارزش است چون در بسیاری از صنایع ثانوی به کار می‌رود.

تولید ترکیبات آلی

دیگر استفاده مهم هیدروکلریک اسید در تولید ترکیبات آلی، مثل وینیل کلرید و دی کلرواتان برای پلی وینیل کلراید (PVC) است. معمول این کار یک استفادهٔ غیرآزاد است زیرا مصرف محلی هیدروکلریک اسید تولید شده در واقع به بازار آزاد نمی‌رسد. دیگر ترکیبات آلی تولید شونده توسط هیدروکلریک اسید عبارتند از بیسفنول ای برای پلی کربنات، کربن فعال و اسید اسکوربیک مثل تولیدات متعدد داروهای شیمیایی. 2 CH2=CH2 + 4 HCl + O2 → 2 ClCH2CH2Cl + 2 H2O (دی کلرواتان توسط اکسی کلری شدن)

چوب + HCl + حرارت ← کربن فعال (فعال سازی شیمیایی)

تولید ترکیبات غیرآلی

محصولات زیادی توسط هیدروکلریک اسید طی یک واکنش اسید و باز طبیعی منجر به ترکیبات معدنی (غیرآلی) تولید می‌شوند و هم چنین مواد شیمیایی درگیر با آب مثل کلرید آهن (III) و پلی آلومینیوم کلراید (PAC). Fe2O3 + 6 HCl → 2 FeCl3 + 3 H2O (کلرید آهن (III) از مگنتیت)

کلرید آهن (III) و PAC هر دو به عنوان عوامل لخته سازی و انعقاد در تصفیه آب و فاضلاب، تولید آب آشامیدنی و تولید کاغذ به کار می‌روند. دیگر ترکیبات معدنی تولید شونده با هیدروکلریک اسید شامل کلرید کلسیم، نمک پخش در جاده، کلرید نیکل (II) برای آبکاری الکتریکی و کلرید روی برای صنعت گالوانی کردن و تولید باتری هستند. CaCO3 + 2 HCl → CaCl2 + CO2 + H2O (کلرید کلسیم از سنگ آهک)

کنترل pH و خنثی سازی

هیدروکلریک اسید هم چنین برای تنظیم اسیدی بودن (pH) محلول‌ها به کار می‌رود. OH + HCl → H2O + Cl

در خلوص مورد نیاز صنایع (غذایی، دارویی، آب آشامیدنی)، هیدروکلریک اسید با کیفیت برای تنظیم pH فرایند جریان‌های آبی مورد استفاده قرار می‌گیرد. در صنایع کم‌تقاضا، هیدروکلریک اسید با کیفیت فنی برای خنثی سازی جریان‌های اتلافی و مراقبت از استخر شنا به کار گرفته می‌شود.

بازسازی مبدل‌های یونی

هیدروکلریک اسید پر کیفیت در بازسازی یک رزین مبدل یون به کار گرفته می‌شود. تبادل کاتیون به‌طور گسترده برای حذف یون‌هایی مثل Na+ و Ca2+ از محلول‌های آبی در تولید آب معدنی شده مورد استفاده قرار می‌گیرد. اسید برای شستن کاتیون‌ها از رزین‌ها به کار می‌رود. Na+ با H و Ca2+ با 2Hجایگزین می‌شود.

مبادله می‌شوند. مبدل‌های یونی و آب معدنی در تمام صنایع شیمیایی، تولید آب آشامیدنی و اکثر صنایع غذایی مورد استفاده قرار می‌گیرند.

دیگر کاربردهای هیدروکلریک اسید

هیدروکلریک اسید در تعداد زیادی از کاربری‌های مقیاس کوچک مثل فرایند چرم سازی، خالص سازی نمک طعام، نظافت و خانه‌داری،[۲۷] و بنای ساختمان‌ها به کار می‌رود. تولید نفت را می‌توان با تزریق هیدروکلریک اسید در بستر صخره‌ای یک چاه نفت، حل کردن یک بخش از صخره و ساختن یک منفذ بزرگ تحریک کرد. اسیدزنی چاه نفت یک فرایند معمول در صنعت تولید نفت دریای شمال است.

هیدروکلریک اسید برای حل کردن کلسیم کربنات نیز به کار می‌رود به عنوان مثال برای پوسته پوسته کردن کتری‌ها و برای پاک کردن ملات از آجرکاری‌ها. البته یک مایع خطرناک است که باید با دقت کافی از آن استفاده کرد. ضمن استفاده روی یک آجرکاری، واکنش آن با ملات تا جایی که کل اسید تبدیل شود ادامه می‌یابد و کلسیم کربنات، کربن دی‌اکسید و آب را به همراه دارد:
2HCl + CaCO3 → CaCl2 + CO2 + H2O

اکثر واکنش‌های شیمیایی هیدروکلریک اسید در تولید غذا، مواد تشکیل دهنده غذا و افزودنی‌های غذایی به کار گرفته می‌شوند. محصولات رایج عبارتند از آسپارتام، فروکتوز، سیتریک اسید، لیزین، پروتئین گیاهی هیدرولیز شده با اسید به عنوان مقوی غذایی، و در تولید ژلاتین. هیدروکلریک اسید مورد استفاده در صنایع غذایی (خیلی خالص) را می‌توان موقع نیاز برای محصول نهایی به کار برد.

در سیاره زهره ابرهایی از هیدروکلریک اسید با غلظت کم وجود دارد.

نقش بیولوژیک

نمودار غشاء مخاطی قلیایی در معده با مکانیزم‌های دفاعی مخاطی

اسید معده یکی از ترشحات اصلی معده است و به‌طور عمده شامل هیدروکلریک اسید بوده و محتوای معده را طوری اسیدی می‌کند که پی اچ بین ۱ و ۲ داشته باشد.[۲۸][۲۹]

یون‌های کلرید (Cl) و هیدروژن (H+) در ناحیهٔ بالایی معده توسط یاخته جداری از مخاط اسید معده ترشح می‌شوند و به سمت یک شبکهٔ ترشحی به نام کانالیکولی قبل از اینکه وارد حفره پایینی معده شوند، هدایت می‌شوند.[۳۰]

اسید معده مانند یک سد مقابل ریزاندامه‌ها برای جلوگیری از عفونت‌ها ظاهر می‌شود و برای هضم غذا اهمیت زیادی دارد. پی اچ پایین آن پروتئین‌ها را دناتوره می‌کند و در نتیجه آن‌ها را برای تخریب توسط آنزیم‌های گوارشی مثل پپسین حساس می‌کند. پی اچ پایین هم چنین آنزیم پیشروی پپسینوژن را فعال و تبدیل به آنزیم فعال پپسین (با خودشکافی) می‌کند. بعد از ترک معده، هیدروکلریک اسید کیموس توسط سدیم بی کربنات در دوازدهه خنثی می‌شود.

خود معده با ترشح لایهٔ ضخیم مخاط، و با سکرتین ناشی از محلول بافر سدیم بی کربنات در مقابل این اسید قوی از خود محافظت می‌کند. سوزش یر دل یا زخم معده وقتی این مکانیزم‌ها دچار مشکل شوند، رخ می‌دهند. داروهای آنتی هیستامین و دسته‌های مهارکننده‌های پروتون پمپ می‌توانند تولید اسید در معده را مهار کنند، و آنتاسیدها نیز برای خنثی تر کردن اسید موجود مورد استفاده قرار می‌گیرند.[۳۱]

ایمنی

غلظت بر حسب وزنطبقه‌بندی[۳۲]کد ایمنی
۱۰–۲۵٪محرک (Xi)R36/37/38
> ۲۵٪خورنده (C)R۳۴ R۳۷

هیدروکلریک اسید غلیظ (هیدروکلریک اسید بخار) مه‌های اسیدی تشکیل می‌دهد. مه و محلول هر دو تأثیر خورنده بازگشت‌ناپذیری بر بافت انسان با قابلیت تخریب اندام‌های تنفسی، چشم‌ها، پوست و روده‌ها دارند. پس از اختلاط هیدروکلریک اسید با مواد شیمیایی اکسیدکنندهٔ معمول مثل سدیم هیپوکلریت (سفیدکننده، NaClO) یا پتاسیم پرمنگنات (KMnO4)، گاز سمی کلر تولید می‌شود. NaClO + 2 HCl → H2O + NaCl + Cl22 KMnO4 + 16 HCl → 2 MnCl2 + 8 H2O + 2 KCl + 5 Cl2

تجهیزات ایمنی مثل دستکش‌های لاستیکی یا PVC، عینک‌های ایمنی محافظ چشم و کفش‌ها و لباس‌های مقاوم در برابر مواد شیمیایی برای به حداقل رساندن خطرات استفاده از هیدروکلریک اسید به کار می‌روند. آژانس حفاظت محیط زیست ایالات متحده آمریکا هیدروکلریک اسید را یک مادهٔ سمی معرفی کرده و مقررات آن را تنظیم می‌نماید.[۳۳]

شماره بین‌المللی کالاهای خطرناک یا شمارهٔ وزارت ترابری آمریکا (DOT) آن ۱۷۸۹ است. این شماره روی یک پلاکارد بر روی محفظه نمایش داده می‌شود.

اب سنگین

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه فنی و مهندسی

اب سنگین:

آب سنگین معمولاً به اکسید هیدروژن سنگین، D۲O یا ۲H۲O اطلاق می‌شود. هیدروژن سنگین یا دوتریم (Deuterium) ایزوتوپی پایدار از هیدروژن است که به نسبت یک به ۶۴۰۰ از اتم‌های هیدروژن در طبیعت وجود دارد. در آب سنگین (با فرمول D۲O) ایزوتوپ هیدروژن به نام دوتریم (با نماد اتمی ۲H یا D) با اکسیژن ترکیب شده‌است. خواص فیزیکی و شیمیایی آن به نوعی مشابه با آب معمولی یا همان H۲O است. از کاربردهای این آب می‌توان به استفاده از آن در رآکتورهای هسته‌ای با سوخت اورانیم، به عنوان مهارگر (Moderator) به جای گرافیت و نیز عامل انتقال گرمی رآکتور نام برد.[۱]

دوتریم اکسید
نام‌گذاری آیوپاک[2H]2-water
دیگر نام‌هاDeuterium monoxide
Deuterium oxide Water-d2
شناساگرها
شماره ثبت سی‌ای‌اس۷۷۸۹-۲۰-۰ 
پاب‌کم۲۴۶۰۲
کم‌اسپایدر۲۳۰۰۴ 
UNIIJ65BV539M3 
شمارهٔ ئی‌سی232-148-9
KEGGD03703 
MeSHDeuterium+oxide
ChEBICHEBI:41981 
ChEMBLCHEMBL۱۲۳۲۳۰۶ 
شمارهٔ آرتی‌ئی‌سی‌اسZC0230000
مرجع جی‌ملین97
جی‌مول-تصاویر سه بعدیImage 1
SMILES [2H]O[2H]
InChI InChI=1S/H2O/h1H2/i/hD2 
Key: XLYOFNOQVPJJNP-ZSJDYOACSA-N InChI=1/H2O/h1H2/i/hD2
Key: XLYOFNOQVPJJNP-ZSJDYOACEI
خصوصیات
فرمول مولکولی2H2O
جرم مولی20.0276 g mol−1
شکل ظاهریVery pale blue transparent liquid very similar to regular water
چگالی1.107 g cm−3
دمای ذوب۳٫۸ درجه سلسیوس (۳۸٫۸ درجه فارنهایت؛ ۲۷۶٫۹ کلوین)
دمای جوش‎101 °C, 374 K, 214 °F
انحلال‌پذیری در آبReacts
log P−1.38
گرانروی0.00125 Pa s (at 20 °C)
گشتاور دوقطبی1.87 D
خطرات
MSDSExternal MSDS
لوزی آتشNFPA 704 four-colored diamond
به استثنای جایی که اشاره شده‌است در غیر این صورت، داده‌ها برای مواد به وضعیت استانداردشان داده شده‌اند (در 25 °C (۷۷ °F)، ۱۰۰ kPa)
  (بررسی) (چیست: ✔/؟)
Infobox references

با آب سخت اشتباه نشود.

ساختار و خواص شیمیایی

مولکول آب سنگین همانند مولکول آب معمولی، یک مولکول قطبی است و زاویه پیوند در آن کم‌تر از زاویه چهاروجهی منتظم، یعنی کم‌تر از ۱۰۹٫۵ درجه است.[۲] این مولکول همانند آب معمولی به عنوان یک ماده آمفی‌پروتیک عمل می‌کند؛ یعنی می‌تواند یون هیدروژن بدهد و بگیرد (در این‌جا ایزوتوپ دوتریم است که به شکل یون مثبت، مبادله می‌گردد).[۳] به دلیل کوچک‌تر بودن ایزوتوپ دوتریم نسبت به پروتیم (هیدروژن معمولی) طول پیوند O-D در آب سنگین اندکی از طول پیوند آب معمولی (O-H) کم‌تر است.

تاریخچه

والتر راسل در سال ۱۹۲۶ با استفاده از جدول تناوبی «مارپیچ» وجود دوتریم را پیش‌بینی کرد.

هارولد یوری شیمیدان و از پیشتازان فعالیت روی ایزوتوپها که در سال ۱۹۳۴ جایزه نوبل در شیمی گرفت در سال ۱۹۳۱ ایزوتوپ هیدروژن سنگین را که بعدها به منظور افزایش غلظت آب مورد استفاده قرار گرفت، کشف کرد.

همچنین در سال ۱۹۳۳، گیلبرت نیوتن لوویس (Gilbert Newton Lewis شیمیدان و فیزیکدان مشهور آمریکایی) استاد هارولد یوری توانست برای اولین بار نمونه آب سنگین خالص را به‌وسیله عمل برق‌کافت تولید کند.

اولین کاربرد علمی از آب سنگین در سال ۱۹۳۴ توسط دو بیولوژیست به نام‌های هوسی (Hevesy) و هافر (Hoffer) صورت گرفت. آن‌ها آب سنگین را برای آزمایش ردیابی بیولوژیکی، به منظور تخمین میزان بازدهی آب در بدن انسان، مورد استفاده قرار دادند.

روش تهیه

در طبیعت از هر ۳۲۰۰ مولکول آب یکی آب نیمه سنگین (HDO) است. هنگامی که مقدار HDO در آب زیاد شد، میزان آب سنگین نیز بیشتر می‌شود زیرا مولکول‌های آب هیدروژن‌های خود را با یکدیگر عوض می‌کنند و احتمال دارد که از دو مولکول HDO یک مولکول H۲O یا آب معمولی و یک مولکول D۲O یا آب سنگین به وجود آید. برای تولید آب سنگین خالص با استفاده از روش‌های تقطیر یا الکترولیز به دستگاه‌های پیچیده تقطیر و الکترولیز و همچنین مقدار زیادی انرژی نیاز است، به همین دلیل بیشتر از روش‌های شیمیایی برای تهیه آب سنگین استفاده می‌کنند.

کاربردهای صنعتی

کندکننده نوترون

آب سنگین در بعضی از انواع رآکتورهای هسته‌ای نیز به عنوان کندکننده نوترون به کار می‌رود. نوترون‌های کند می‌توانند با اورانیوم واکنش بدهند. از آب سبک یا آب معمولی هم می‌توان به عنوان کندکننده استفاده کرد، اما از آنجایی که آب سبک نوترونهای حرارتی را هم جذب می‌کنند، رآکتورهای آب‌سبک باید از اورانیوم غنی شده با خلوص زیاد استفاده کنند، اما رآکتور آب‌سنگین می‌تواند از اورانیوم معمولی یا غنی نشده هم استفاده کند، به همین دلیل تولید آب سنگین به بحث‌های مربوط به جلوگیری از توسعه سلاح‌های هسته‌ای مربوط است. رآکتورهای تولید آب سنگین را می‌توان به گونه‌ای ساخت که بدون نیاز به تجهیزات غنی سازی، اورانیوم را به پلوتونیوم قابل استفاده در بمب اتمی تبدیل کند. البته برای استفاده از اورانیوم معمولی در بمب اتمی می‌توان از روش‌های دیگری هم استفاده کرد.

کشورهای هند، اسرائیل، پاکستان، کره شمالی، روسیه و آمریکا از رآکتورهای تولید آب سنگین برای تولید بمب اتمی استفاده کردند. با توجه به امکان استفاده از آب سنگین در ساخت سلاح هسته‌ای، در بسیاری از کشورها دولت تولید یا خرید و فروش مقدار زیاد این ماده را کنترل می‌کند. اما در کشورهایی مثل آمریکا و کانادا می‌توان مقدار غیر صنعتی یعنی در حد گرم و کیلوگرم را بدون هیچ گونه مجوز خاصی از تولیدکنندگان یا عرضه‌کنندگان مواد شیمیایی تهیه کرد. هم‌اکنون قیمت هر کیلوگرم آب سنگین با خلوص ۹۸/۹۹درصد حدود ۶۰۰ تا ۷۰۰ دلار است. گفتنی است بدون استفاده از اورانیوم غنی شده و آب سنگین هم می‌توان رآکتور تولید پلوتونیوم ساخت. کافی است که از کربن فوق‌العاده خالص (کُک) به عنوان کندکننده استفاده شود از آنجایی که نازی‌ها از کربن ناخالص استفاده می‌کردند، متوجه این نکته نشدند در حقیقت از اولین رآکتور اتمی آزمایشی آمریکا سال ۱۹۴۲ و پروژه منهتن که پلوتونیوم آزمایش ترینیتی و بمب مشهور «فت من» را ساخت، از اورانیوم غنی شده یا آب سنگین استفاده نمی‌شد.

آشکار سازی نوترینو

رصد خانه نوترینوی سادبری در انتاریوی کانادا از هزار تن آب سنگین استفاده می‌کند. آشکار ساز نوترینو در اعماق زمین و در دل یک معدن قدیمی کار گذاشته شده تا مئون‌های پرتوهای کیهانی به آن نرسد. هدف اصلی این رصدخانه یافتن پاسخ این پرسش است که آیا نوترینوهای الکترون که از همجوشی در خورشید تولید می‌شوند، در مسیر رسیدن به زمین به دیگر انواع نوترینوها تبدیل می‌شوند یا خیر. وجود آب سنگین در این آزمایش‌ها ضروری است، زیرا دوتریم مورد نیاز برای آشکارسازی انواع نوترینوها را فراهم می‌کند.

آب سنگین یکی از اجزای داخلی یک بمب هیدروژنی است.

از آن در ساخت دستگاه های NMR spectroscopy استفاده میشود که —

— یکی از موارد کاربرد آن کشف و نمایش شکل ملکول های مواد دارویی است.

طیف‌سنجی تشدید مغناطیسی هسته‌ای

آب نیمه سنگین

چنانچه در اکسید هیدروژن تنها یکی از اتم‌های هیدروژن به ایزوتوپ دوتریوم تبدیل شود نتیجه حاصله (HDO) را آب نیمه سنگین می‌گویند. در مواردی که ترکیب مساوی از هیدروژن و دوتریوم در تشکیل مولکولی آب حضور داشته باشند، آب نیمه سنگین تهیه می‌شود. دلیل این امر تبدیل سریع اتم‌های هیدروژن و دوتریوم بین مولکول‌های آب است، مولکول آبی که از ۵۰ درصد هیدروژن معمولی (H) و ۵۰ درصد هیدروژن سنگین(D) تشکیل شده‌است، در موازنه شیمی در حدود ۵۰ درصد HDO و ۲۵ درصد آب (H2O) و ۲۵ درصد D2O خواهد داشت.

نکته قابل توجه آن است که آب سنگین را نباید با آب سخت که اغلب شامل املاح زیاد است یا با آب تریتیوم (T2O or 3H۲O) که از ایزوتوپ دیگر هیدروژن تشکیل شده‌است، اشتباه گرفت. تریتیوم ایزوتوپ دیگری از هیدروژن است که خاصیت رادیواکتیو دارد و بیشتر برای ساخت موادی که از خود نور منتشر می‌کنند بکار برده می‌شود.

آب با اکسیژن سنگین

آب با اکسیژن سنگین، در حالت معمول H۲۱۸O است که به صورت تجارتی در دسترس است ببیشتر برای ردیابی بکار برده می‌شود. به عنوان مثال با جایگزین کردن این آب (از طریق نوشیدن یا تزریق) در یکی از عضوهای بدن می‌توان در طول زمان میزان تغییر در مقدار آب این عضو را بررسی کرد.

این نوع از آب به ندرت حاوی دوتریوم است و به همین علت خواص شیمیایی و بیولوژیکی خاصی ندارد برای همین به آن آب سنگین گفته نمی‌شود. ممکن است اکسیژن در آن‌ها به صورت ایزوتوپ‌های O۱۷ نیز موجود باشد، در هر صورت تفاوت فیزیکی این آب با آب معمولی تنها چگالی بیشتر آن است.

آزمون‌های سوخت و ساز در بدن

از مخلوط آب سنگین با ۱۸O H۲ (آبی که اکسیژن آن ایزوتوپ ۱۸O است نه ۱۶O) برای انجام آزمایش اندازه‌گیری سرعت سوخت و ساز بدن انسان و حیوانات استفاده می‌شود. این آزمون سوخت و ساز را معمولاً آزمون آب دوبار نشان دار شده می‌نامند.