دوره حقوق ورزشی

دوره حقوق ورزشی


پردیس فناوری کیش_طرح مشاورین متخصص_گروه ورزشی


امروزه در میان ما ایرانی‌ها، آشنایی با مسائل حقوقی خود خیلی باب نیست. مگر این که در آن حوزه متخصص باشیم.

این در حالیست که هر شهروند باید با حقوق خود در نقشی که دارد آشنا باشد. به خصوص که با روشن شدن وظایف و اختیارات هر فرد در هر جایگاهی از دنیای ورزش، عمده‌ی سوتفاهم‌ها و درگیری‌های میان از گروه از بیین می‌رود.

از طرفی آشنایی با حقوق ورزشی برای ورزشکاران یا علاقمندان به ورزش موجب می‌شود پرده‌ی ابهام از اصطلاحات مختلف حقوقی همچون 《رابطه‌ی علیت》 و 《ارتکاب عمل》 برداشته شود.

این امر فاصله‌ی میان جرم و شبه جرم را مشخص می‌کند.

از آنجایی که حادثه از ورزش قابل تفکیک نیست برای سالم‌سازی هر چه بیشتر فضای ورزشی کشورمان، تصمیم گرفتیم دوره‌ای در حوزه‌ی 《حقوق ورزشی》 برگزار کنیم.

در این دوره در کنار هم :

  • آیین نامه‌‌های بین‌المللی را بررسی میکنیم
  • با مسائل حقوقی ورزش آشنا می‌شویم
  • تشخیص مسئولیت‌های قانونی ورزش را یاد می‌گیریم.

 

دوره آنلاين حقوق ورزشي

ويژه: كليه رشته هاي ورزشي و تربيت بدني، رشته هاي گروه حقوق، مديريت ، قراردادها ، امور بين الملل ، ورزشكاران حرفه اي،علاقه مندان و افراد جوياي كسب و كار در حوزه ورزش ( تخفيف ويژه دانشجويان)

تاريخ برگزاري: ۵ شهریورماه ۱۳۹۹

زمان : ۹ الي ۱۷

مدت دوره: ۸ ساعت ( در ۴ بخش يك روزه)

تلفن تماس : ۰۲۱۶۶۱۷۶۱۹۶

جهت ثبت نام در دوره آنلاین حقوق  ورزشی به سایت زیر مراجعه نمایید .

www.perspolis.ipcce.ir

جهت ثبت نام در دوره آنلاین حقوق  ورزشی به سایت زیر مراجعه نمایید .

www.perspolis.ipcce.ir

بررسی نقش تغییرات آب و هوایی در تولید پاتوژن ها

بررسی نقش تغییرات آب و هوایی در تولید پاتوژن ها

پردیس فناوری کیش طرح مشاوره متخصصین صنعت و مدیریت گروه علوم و مهندسی محیط زست

طبق برآوردهای چند محقق، اثرات گرم‌شدن کره زمین قابل توجه است و این زنجیره حوادث به‌طور کلی وجهه خوبی ندارد.

میکروب‌ها به‌عنوان بازیافت‌کننده های محیط زیستی در زمین، نقشی بزرگ ایفا می‌کنند.

بسته به قدرت ژنومی خود، میکروب‌ها می‌توانند از ترکیبات خاصی استفاده کنند .

سپس طی مراحلی آن‌ها را به شکل دیگری تبدیل کنند که توسط گروه‌های دیگر موجودات زنده قابل استفاده باشند.

با رشد میکروب‌ها می‌توانیم ظهور پاتوژن‌های عفونی جدید را شاهد باشیم.

این پاتوژن‌ها در برابر دماهای بیشتر از حد تحمل بدن ما مقاوم هستند.

پاتوژن‌های عفونی تشکیل‌شده طی این شرایط، نسبت به دماهای بالاتر قابل تحمل تر است و نیز می‌توانند از سد دفاعی سیستم ایمنی بدن تجاوز کنند.


گرم‌شدن کره زمین بیشتر ناشی از تولید گازهای گلخانه‌ای و انتشار آن‌ها است؛ به‌عنوان مثال دی‌اکسید کربن و متان. میل طبیعی این گازها این است که انرژی گرمایی منعکس‌شده توسط سطح زمین را هدر دهند.

حساسیت میکروارگانیسم‌ها با گرم‌شدن کره زمین، مبحثی است که توسط محققان تشخیص داده شده است.

در حقیقت، بسیاری از گیاهان و حیوانات تا حد خیلی زیادی به میکروب‌ها وابسته هستند.

به‌عنوان مثال، در سیستم چرخه کربن، میکروب‌ها از ترکیبات آلی استفاده می‌کنند و سپس با تجزیه آن‌ها در طبیعت، دی‌اکسید کربن به‌عنوان محصول جانبی آزاد می‌شود.

پیش‌بینی ها حاکی از آن است که با افزایش دما این فرایندهای میکروبی قوت بگیرند؛ از جمله نشر دی‌اکسید کربن.

اثر متقابل دیگری که با افزایش دما شاهدش هستیم این است که ممکن است شمار زیادی از زیستگاه‌ها تحت تأثیر قرار بگیرد.

یخچال‌های طبیعی یکی از آن دسته منابع است که درجه حرارت بالا می‌تواند آن را از بین ببرد.

با آب شدن این یخ‌های طبیعی، برخی درختان که از آب آن‌ها تغذیه می‌شدند در معرض خطر قرار می‌گیرند.

بدون درختان، جذب دی‌اکسید کربن از جو کم می‌شود و این امر به نوبه خود باعث افزایش میزان دی‌اکسید کربن موجود در جو می‌شود.

گروهی از محققان این پیام را منعکس نمودند که تغییرات جهانی آب و هوا فقط ناشی از اثرات مخرب سیستم حاکم در طبیعت نیست، بلکه می‌تواند میکروب‌های خطرناک برای سلامتی انسان نیز پخش کند.

انسان می‌تواند گستره‌ای بزرگ از دمای محیط -ولو بیشتر از حد مجاز باشد- را تحمل کند. این در حالی است که برخی از میکروب‌ها می‌توانند همین کار را بهتر از ما آدم‌ها انجام دهند.

ساختار میکروب‌ها به‌نحوی است که می‌توانند دماهای بالاتر از آنچه آستانه تحمل انسان است را تاب آورد.

ظاهراً این عوامل بیماری‌زا نه صرفاً برای ما انسان‌ها، بلکه برای حیوانات و نیز محصولاتِ آسیب‌پذیر نیز تهدید کننده تلقی می‌گردند.

بنابراین این اثر منفی می‌تواند به لحاظ زیست‌محیطی، به‌ویژه در زنجیره غذایی رسوخ کند.

افزایش دما منجر به یک فعالیت میکروبی شدید می‌شود.

به همین دلیل، محققان در حال حاضر مشغول بررسی آن به‌منظور مبارزه با آلودگی گاز متان هستند.

این باکتری‌ها می‌توانند 11 کیلوگرم در سال متان مصرف کنند و بنابراین می‌توانند به کاهش میزان متان ساطع شده توسط کارخانه‌ها و محل‌های دفن زباله کمک کنند.

تولید الکل صنعتی

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

اتانول چطور تولید می شود؟

اتانول یا اتیل‌ الکل یک مایع شفاف و بی‌رنگ است که ترکیب اصلی بسیاری از نوشیدنی‌های الکلی را تشکیل می‌دهد. در مقیاس صنعتی می‌توان از راه‌های هیدراتاسیون گاز اتیلن و یا فرآیند تخمیر به اتانول دست‌یافت. با استفاده از تخمیر؛ اتانول را می‌توان از هر محصول گیاهی که حاوی مقادیر زیادی شکر است، تولید کرد. هر ترکیبی هم که بتوان آن را به شکر تبدیل کرد در تولید اتانول استفاده می‌شود مانند نشاسته و سلولز.

نشاسته و سلولز در تولید اتانول

شکر چغندرقند و نیشکر؛ استخراج‌شده و تحت فرآیند قرار می‌گیرد. محصولاتی مثل ذرت ، گندم و جو حاوی نشاسته هستند، به شکر تبدیل می‌شوند و از آن اتانول تولید می‌کنند. عمده تولید اتانول ایالات‌متحده از نشاسته صورت می‌گیرد. منبع تأمین نشاسته هم عمدتاً از مزارع ذرت تأمین می‌شود.
منبع دیگر شکر در درخت‌ها و سایر گیاهان به‌صورت الیاف سلولزی وجود دارد. برای استفاده از سلولز، ابتدا باید آن را به شکر تخریب کرد و سپس شکر طی فرایند تخمیر، به اتانول تبدیل می‌شود. محصولات جانبی عملیات‌های جنگل‌داری هم، برای تولید اتانول با منبع سلولزی استفاده می‌شود. خاک‌اره، تکه‌های چوب، شاخه‌ها و ضایعات محصولات کشاورزی از موادی هستند که می‌توان از آن‌ها در تولید اتانول سلولزی استفاده کرد. برخی گیاهان نیز منحصراً برای تولید اتانول کشت می‌شوند.

فرآیند میلینگ

تولید اتانول عمدتاً در یک فرایند چهار مرحله‌ای انجام می‌شود:

میلینگ مرطوب

روش دیگری که برای تولید اتانول توسط تولیدکنندگان در مقیاس بزرگ استفاده می‌شود، میلینگ مرطوب است. در این فرآیند، یک مرحله خیس شدگی وجود دارد. پس‌ازآن تفاله غلات، روغن ، نشاسته و گلوتن جداسازی شده و برای تبدیل به محصولات ارزشمندتر تحت فرآیند قرار می‌گیرند. یکی از این محصولات شربت ذرت است که دارای مقادیر زیادی فروکتوز می‌باشد. این شربت به‌عنوان شیرین‌کننده در صنایع غذایی استفاده می‌شود. روغن ذرت هم محصول دیگری است که از محیط جداسازی شده و تحت پالایش قرار می‌گیرد. گلوتن تحت فرآیند میلینگ مرطوب جدا می‌شود و به‌عنوان ماده افزودنی در خوراک مورداستفاده قرار می‌گیرد.

خالص سازی اتانول

در فرآیند تولید اتانول پس از تخمیر، نوبت به مرحله‌ی تقطیر می‌رسد. در این مرحله اتانول تا حدود 96 درجه خالص می‌شود. در این مرحله از چند برج تقطیر سینی‌دار یا آکنده با جنس استیل وجود دارد. برای به دست آوردن خلوص بیشتر از چند روش می توان استفاده کرد:
استفاده از غربال ملکولی: در این روش از غربال ملکولی برای به دام افتادن مولکول‌های آب و افزایش درصد اتانول استفاده می‌شود.
استفاده از پمپ خلا: در این روش با کاهش فشار نقطه‌ی آزئوتروپ شکسته شده و الکل خالص به‌دست می‌آید.
روش تقطیر غشایی: در این روش با استفاده از تقطیر غشایی الکل 99.96 حاصل می‌شود.

گرایش نانوفناوری رشته مهندسی شیمی

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

مهندسی شیمی با گرایش نانو درمقطع کارشناسی ارشد در دانشگاه صنعتی امیرکبیر با 11 نفر ظرفیت ارائه میشود. این دانشگاه در گرایش نانوپلیمر هم 8 نفر دانشجو جذب کرده است. بیایید ابتدا یک تعریفی از علم و فناوری نانو داشته باشیم. این فناوری پدیده هزاره سوم است و راهی جز ورود به این عرصه نیست. این زمینه را نمی توان به عنوان رشته جدیدی معرفی کرد بلکه رویکردی جدید به تمام علوم فعلی در مقیاس نانو است.

فناوری نانو علمی گسترده و فرا رشته ای است و ما قصد داریم از چشم این علم به کلیه علوم و فنون از جمله علوم محض، فنی مهندسی، پزشکی،غذایی وغیره نگاه کنیم. به علت بروز مشکلات، پیچیدگی ها و مسائل اخلاقی که به دنبال شبیه سازی انسان، گیاه و حیوان دراین محدوده به وجود خواهد آمد لازم است که همکاری علوم نظری از نظر مسائل حقوقی در این فناوری صورت گیرد.

بدون اغراق باید بگوییم که رشته نانوشیمی تقریباً در همه ی علوم و فنون به کارمی رود. یعنی در زمینه های مختلفی مثل سوخت، پلیمر، رنگ، سوخت وساز، پوشاک، دارو، غذا و هر چه که به شیمی و مهندسی شیمی مربوط می شود، می توان از مزیت های این فناوری استفاده کرد. پس توجه به همه ی علوم در مقیاس نانو و کار و تولید در این مقیاس برای دستیابی به فرآورده های با کیفیت و کمیت بهتر و ارزانتر، محکمتر، سبکتر و کاراتر است.

ویژگی های این رشته



دناتونیم چیست؟

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

«دناتونیوم بنزوات» تلخ ترین ماده ای است که تا کنون توسط بشر کشف شده است. این ماده نخستین بار در هنگام کار روی مشتقات «لیدوکائین» در آزمایشگاه توسط شرکت Macfarlan smith‌سنتر شد و به لحاظ مزه بسیار تلخی که داشت به عنوان تلخ کننده برای اجتناب از خورده شدن تصادفی یا عمدی بسیاری از مواد شیمیایی مورد استفاده قرار گرفت. داناتونیوم بنزوات پودری است سفید رنگ، بدون بو و بسیار تلخ که انسان به شدت به مزه تلخ آن حساس است و می تواند وجود آن را در غلظت های ppb 50در آب تشخیص دهد. نوزادان نیز حتی هنگام تولد به مزه تلخ دناتونیوم حساس هستند.

در حال حاضر شورای ملی ایمنی آمریکا (National Safety council‌) و انجمن پزشکی آمریکا ( American Medical Association) اضافه کردن دناتونیوم بنزوات را به آن دسته از ترکیبات شیمیایی که در گروه نسبتاً سمی یا سمی طبقه بندی می شوند، توصیه می کند. دناتونیوم بنزوات در موارد نرم کننده های لباس و خوشبو کننده های مورد استفاده در منازل، رنگ مو، مواد پاک کننده لاک، ضدیخ اتومبیل، پولیش دهنده های اتومبیل، مواد دافع حشرات، حیوانات موذی و گیاه کش ها مورد استفاده قرار می گیرد.

پایداری

دناتونیوم بنزوات کاملاً پایدار و با بیشتر مواد شیمیایی سازگاری دارد به طوری که اضافه کردن آن به مواد شیمیایی تأثیری روی کارآیی آنها ندارد. از آنجا که این جسم به شدت تلخ بوده و ممکن است کار با پودر آن مشکل باشد بسیاری از تولیدکنندگان آن را به صورت محول های آماده در اتانول با غلظت های مشخص و بالا عرضه می کنند.

کاربرد

روی برچسب فرآورده هایی که دناتونیوم بنزوات به آنها اضافه شده است، باید ذکر شود؛ چرا که چنین برچسبی روی یک فرآورده نشانگر ایمن بودن آن و بیانگر آن است که تولید کننده پیش بینی ها و تمهیدات لازم برای خورده نشدن محصول را کرده است. بسیاری از تولیدکنندگان از این امر به عنوان امری تبلیغاتی برای نشان دادن رعایت حقوق مصرف کننده از سوی تولید کننده در جهت فروش بیشتر محصولات خود استفاده می کنند. علاوه بر موارد فوق، کاربردهایی از قبیل درمان جویدن ناخن ها و مکیدن شست دست در کودکان نیز با استفاده از محلول های دناتونیوم بنزوات مورد توجه قرار گرفته است. بسیاری از حیوانات نیز به مزه تلخ دناتونیوم بنزوات حساس هستند، به طوری که در باغ وحش ها برای آموزش حیوانات نیز از این ماده استفاده می شود.

دناتونیوم بنزوات تحت نام تجاری Bitrex‌توسط شرکت Mac Farlan Smithبه بازار عرضه می شود

کاربردهای آب اکسیژنه در خانه

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

۳۰ دلیل که چرا در هر خانه باید آب اکسیژنه(هیدروژن پر اکسید)وجود داشته باشد.

هیدروژن پر اکسید H2O2 پرکاربرد ترین ماده ی گند زدا در هر خانه در جهان می باشد.
در حقیقت بهتر است یک بطری از آن را در قفسه دارو یا کابینت آشپزخانه داشته باشید.
مردم بیشتر از آب اکسیژنه برای تمیز کردن زخم های کوچک یا به عنوان سفید کننده به کار می برند،در اینجا می خواهیم کاربردهای بیشتری از آن را بیان کنیم.

تذکر:
آب اکسیژن مصرفی در خانه محلول ۳٪ تا ۱۰٪ آن است و فقط برای تمیز کردن سطوح(دستشویی و توالت و …)در صورت استفاده از دستکش می توانید از آب اکسیژنه ی ۳۵٪ استفاده کنید.

۳۰ دلیل برای نگهداری آب اکسیژنه در خانه:

سلامتی و زیبایی

۱-گندزدایی جراحت های کوچک

هیدروژن پر اکسید یک گندزدای طبیعی است، بنابراین یکی از پر کاربردترین مصارف آن ضدعفونی کردن زخم ها برای جلو گیری از عفونت است.

۲-رنگ بری مو

چون هیدروژن پر اکسید ایمن تر از سفید کننده های خانگی است برای سپید کردن مو به کار می رود.

۳-برای های لایت کردن

برای دست یابی به یک های لایت مناسب،هیدروژن پر اکسید را بر روی موهای مرطوب اسپری کنید و ۱۰ تا ۱۵ دقیقه پس از آن آب کشی نمایید.

۴-سپید کردن دندان با خمیردندان هیدروژن پر اکسید

جوش شیرین را با هیدروژن پر اکسید مخلوط کنید تا یک خمیردندانی بسازید که علاوه بر بر طرف کردن عفونت ها در صورت استفاده روزانه لکه های دندان را نیز برطرف کنید.

۵-دهان شوی گند زدا

با یک فنجان پر از هیدروژن پر اکسید دهان خود را شستشو دهید تا باکتری های دهان کشته شوند و بوی نا مطبوع دهان برطرف شود.

۶-گندزدایی مسواک

مسواک را در هیدروژن پر اکسید غوطه ور کنید تا باکتری ها و دیگر میکروب هایی که در محیط حمام یا دستشویی وجود دارد و بر روی مسواک نشسته است را بکشید.

۷-سپید کردن ناخن ها

ناخن های دست و پای خود را در محلول هیدروژن پر اکسید غوطه ور کنید تا به طور طبیعی آن ها را سپید کنید.

۸-از بین بردن آکنه

با هیدروژن پر اکسید صورت خود را آبکشی کنید تا باکتری هایی که باعث آکنه می شوند را بر طرف کنید و صورت شفاف تری داشته باشید.

۹-درمان کورک

مقدار ۲۵۰ سی سی هیدروژن پر اکسید را در وان حمام بریزید و کورک را در آن بخیسانید.

۱۰-درمان میخچه و پینه

به میزان برابر هیدروژن پر اکسید را با آب ولرم مخلوط کنید و میخچه را در آن بخیسانید تا نرم شود.

۱۱-تمیز کردن چربی گوش

چند قطره هیدروژن پر اکسید را در گوش بچکانید،یک تا دو دقیقه صبر کنید سپس چند قطره روغن زیتون در گوش بچکانید و دوباره یک تا دو دقیقه صبر کنید و پس از آن مایع را از گوش خارج کنید تا چربی گوش خارج شود.

۱۲-جلوگیری از عفونت گوش شناگران

پس از باز گشت از استخر مخلوط برابر از هیدروژن پر اکسید و سرکه را با قطره چکان در گوش بریزید تا از عفونت گوش جلوگیری شود.

۱۳-درمان عفونت گوش

شش تا هشت قطره هیدروژن پر اکسید را در گوش بچکانید.

۱۴-کشتن انگل های زیر جلدی

هیدروژن پر اکسید را بر روی پوستی که کرم زیر پوستی یا دیگر انگل ها آسیب دیده بمالید تا به طور طبیعی آن ها را بکشید.

۱۵-درمان قارچ پا

به مقدار برابر هیدروژن پر اکسید و آب را در یک بطری اسپری کدر(نور هیدروژن پر اکسید را ضعیف می کند)بریزید و هر شب بر روی پا اسپری کنید تا از رشد قارچ ها جلوگیری نمیایید.

آشپزخانه و حمام

۱۶-تمیزکردن سطح کاشی ها

هیدروژن پر اکسید را بر روی کاشی اسپری کنید تا کثیفی و لکه ها را پاک کنید.

۱۷-خمیر سفیدگری

هیدروژن پر اکسید را با آرد مخلوط کنید تا یک خمیر بسازید.
چیزی را که می خواهید سپید کنید با این خمیر بپوشانید و با پلاستیک بپوشانید،یک شب تا صبح صبر کنید و روز بعد با آب بشویید.

۱۸-شستن کاسه توالت

کاسه توالت را با هیدروژن پر اکسید بشویید و پس از ۳۰ دقیقه آب کشی نمایید تا لکه ها و کثیفی ها پاک شود.

۱۹-تمیز کردن جرم تشت و وان

هیدروژن پر اکسید را بر روی جرم صابون مانده بر روی وان یا دستشویی اسپری کنید.
پس از ۳۰ دقیقه با یک برس بشویید.

۲۰-کنترل قارچ و کپک

هیدروژن پر اکسید را بر روی سطحی که آلوده به قارچ و کپک شده اسپری کنید تا از رشد آن ها جلوگیری کند.

۲۱-پاک کردن شیشه

هیدروژن پر اکسید را بر روی آینه یا هر شیشه دیگر اسپری کنید و با یک پارچه بدون پرز پاک کنید.

۲۲-گندزدایی اوپن

هیدروژن پر اکسید را بر روی اپن یا میز آشپزخانه اسپری کنید تا تمیز و ضد عفونی شود.

۲۳-گندزدایی اسفنج ظرف شویی

اسفنج ظرف شویی را به مدت ۱۵ تا ۳۰ دقیقه در هیدروژن پر اکسید بیندازید تا ضد عفونی شود.

۲۴-گند زدایی تخته گوشت

هیدروژن پر اکسید را بر روی تخته گوشت اسپری کنید تا جرم و باکتری هایی را که در شیارهای تخته گوشت نفوذ کرده اند را از بین ببرید.

۲۵-شستن میوه و سبزی

هیدروژن پر اکسید را بر روی میوه و سبزی اسپری کنید و یکی دو دقیقه صبرکنید و سپس با آب بشویی تا کثیفی ها،واکس ها ی بر روی میوه و دیگر آلودگی ها را بزدایید.

۲۶-شستشوی یخچال و فریزر

درون یخچال و فریزر را با هیدروژن پر اکسید اسپری کنید و چند دقیقه صبر کنید سپس با یک پارچه تمیز پاک کنید تا لکه های غذا و آلودگی ها برطرف شود.

۲۷-لباس های سپیدتر

یک فنجان هیدروژن پر اکسید را به آب شستشوی بیافزایید و لباس های سپید را در آن به مدت ۱۵ تا ۳۰ دقیقه بخیسانید تا زردی و کدری آن برطرف شود.

۲۸-برطرف کردن لکه های آلی

دو قسمت هیدروژن پر اکسید و یک قسمت مایع ظرفشویی را مخلوط کنید و بر روی لکه های آلی(لکه ی قهوه،شراب،خون،عرق بدن و…) بمالید تا برطرف شود.
توجه داشته باشید هیدروژن پر اکسید الیاف رنگی را سپید می کند.
این نکته را در استفاده از این تکنیک به خاطر داشته باشید.

۲۹-بو زدایی از پارچه های بد بو شده

هیدروژن پر اکسید را با سرکه مخلوط کنید و پارچه هایی که در اثر کپک بد بو شده اند را در آن بخیسانید و سپس آب کشی نمایید.

۳۰-تمیز کردن فرش و قالیچه

هیدروژن پر اکسید را بر روی بخش های کم رنگ فرش اسپری کنید تا لکه ها،تیره گی ها،خوراکی هاو … را پاک کنید.
به خاطر داشته باشید هیدروژن پر اکسید الیاف رنگی را سپید می کند شاید بهتر باشد این تکنیک را ابتدا در بخش های نا پیدای فرش امتحان کنید(شاید این روش برای فرش های ماشینی که با الیاف مصنوعی بافته شده مناسب باشد).

انواع راکتور ها

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

مروری بر انواع راکتورها

در این مطلب مروری بر انواع راکتورها و روش کار آنها پرداخته می شود. واکنش های شیمیایی که در داخل راکتور صورت می گیرند به دو دسته کلی متجانس Homogenous و نامتجانس Heterogeneous تقسیم بندی می شوند. واکنش ها همچنین به دو دسته پلیمری و غیرپلیمری تقسیم می شوند.

واکنش های متجانس آن دسته از واکنشهایی هستند که در آن تمام اجزای قابل ترکیب حتی کاتالیزور در یک فاز شیمیایی نظیر جامد، مایع و گاز هستند در حالی که در واکنش های نامتجانس، اجزای واکنش دهنده حداقل در دو فاز متفاوت هستند.

متغیرهای موثر در سرعت واکنش در سیستم های متجانس، دما، فشار و غلظت اجزا و در سیستم های نامتجانس به دلیل حضور بیش از یک فاز علاوه بر موارد مذکور، سرعت انتقال جرم و حرارت نیز اهمیت دارد.

سه پارامتر مهمی که جهت توصیف عملکرد راکتور مورد استفاده قرار می گیرد عبارتند از:

درصد تبدیل Conversion:

نسبت مقدار مواد واکنش دهنده مصرفی در راکتور به مقدار مواد واکنش دهنده ای به راکتور تغذیه می باشد. اگر واکنش برگشت پذیر باشد، حداکثر درصد تبدیلی که به آن می توان رسید درصد تبدیل تعادلی نامیده می شود.

انتخاب پذیری Selectivity:

نسبت مقدار محصول مطلوب تولید شده به مقدار مواد واکنش دهنده مصرفی در راکتور می باشد.

بازده راکتور Yield:

مقدار محصول مطلوب تولید شده به مقدار مواد واکنش دهنده ای که به راکتور تغذیه می شود

 

راکتور ناپیوسته: Batch Reactor

از دیدگاه تاریخی، راکتورهای ناپیوسته از آغاز صنعت شیمیایی مورد استفاده بوده و هنوز هم به صورت وسیعی در تولید مواد شیمیایی با ارزش افزودنی بالا مورد استفاده می باشند. در این راکتورها مواد واکنش دهنده در همان ابتدای عمل وارد راکتور می شوند. محتویات راکتور برای مدت مشخصی کاملاً مخلوط شده و پس از مدت زمان معینی که واکنش پیشرفت کرد، محتویات داخل راکتور تخلیه می شوند. در این راکتورها غلظت در طول زمان تغییر می کند اما اختلاط کامل باعث می شود که در لحظه درجه حرارت و ترکیب در سرتاسر راکتور یکنواخت باشد. این راکتورها به منظور تولید در مقیاس کوچک صنعتی (ظرفیت کم) و آزمایش کردن فرایندهای ناشناخته تولید صنعتی محصولات گران قیمت برای محصولاتی که تولید آنها در شرایط مداوم مشکل باشد به کار می روند. امتیاز این راکتورها در این است که با دادن زمان لازم برای انجام واکنش، مواد اولیه با درصد تبدیل بالا به محصولات مورد نظر تبدیل می گردند و احتیاج به وسایل اضافی و کمکی کمتری دارند.

از محدودیتهای این نوع راکتور محدود بودن به واکنش های متجانس فاز مایع، بالا بودن هزینه تولید در واحد حجم محصول تولید شده به دلیل بالا بودن زمان سیکل و زمان تخلیه و شستشو و  مشکل بودن تولید صنعتی در مقیاس بالا  می باشد.

راکتور نیمه پیوسته: Semi Batch Reactor

راکتورهای نیمه پیوسته نیز همان محدودیت های راکتور ناپیوسته را دارد. از امتیازات راکتور های نیمه پیوسته کنترل خوب حرارت و کنترل واکنش های نامطلوب و محدود کردن تولید محصولات ناخواسته می باشد . این عمل از طریق وارد کردن تدریجی یکی از اجزاء ترکیب شونده با غلظت کم میسر می گردد . راکتور های نیمه پیوسته اغلب برای واکنش های دوفازی که یکی از اجزاء ترکیب شونده گاز باشد مورد استفاده قرار می گیرد و جزء گازی به صورت حباب به داخل فاز مایع درون راکتور تغذیه می گردد.

راکتور مخلوط شونده: Mixed Reactor

در این راکتور مواد اولیه وارد راکتور می شوند و پس از اختلاط در راکتور و اقامت برای مدت زمان مشخصی در راکتور، از راکتور خارج می شوند. راکتور مخلوط شونده مشتمل بر انواع پره ها و بافل و سیستم سرمایش و گرمایش است. این راکتور زمانی که یک واکنش شیمیایی احتیاج به همزدن شدید داشته باشد مورد استفاده قرار می گیرد . کنترل حرارت در این راکتورها به آسانی انجام می گیرد. یکی از محدودیت های این نوع راکتورها درصد تبدیل پایینتر آنها در واحد حجم محصول تولید در مقایسه با سایر راکتورهای پیوسته باز می باشد. به همین دلیل حجم راکتور مذکور را باید خیلی بزرگ انتخاب کرد تا به درصد تبدیل بالا دست یافت. در صنعت معمولاً از یک سری راکتور مخلوط شونده پشت سر هم استفاده می شود. راکتورهای Mixed برای اغلب واکنش های متجانس در فاز مایع استفاده می شود. در این راکتورها، جریان خوراک ومحصول پیوسته است و فرض می شود که محتویات راکتور کاملاً بهم می خورد . این عمل منجر به یکنواختی درجه حرارت و ترکیب در راکتور می شود. به علت این اختلاط یک جزء سیال ممکن است در همان لحظه ای که وارد راکتور می شود آنرا ترک کند یا برای مدت زمان زیادی در داخل راکتور باقی بماند . زمان اقامت هرکدام از اجزاء سیال در راکتور متفاوت است.

راکتور لوله ای Tubular Plug Reactor

در صنایع شیمیایی برای فرایندهای با مقیاس بزرگ معمولاً از راکتورهای لوله ای استفاده می شود. زیرا نگهداری سیستم راکتورهای لوله ای آسان می باشد و معمولاً بالاترین درصد تبدیل مواد اولیه در واحد حجم راکتور را در مقایسه با سایر راکتورهای سیستم جاری دارا هستند. از محدودیت های این راکتورها مشکل کنترل حرارتی برای واکنش های گرمازایی است که بسیار سریع عمل می کنند و نهایتاً منجر به نقاط داغ Hot Spot می گردند. نقاط داغ باعث می شوند که کیفیت محصول کاهش یابد و دستگاه آسیب ببیند. اغلب واکنش های متجانس گازی در این نوع راکتورها انجام می گیرند. در این راکتورها نیز مانند راکتورهای Batch زمان اقامت برای تمام اجزاء سیال مساوی است . سیستم متشکل از تعدادی واحدهای سری از راکتورهای مخلوط شونده Mixed، عملکردی مشابه با یک راکتور لوله ای دارد. هرچقدر واحدهای پشت سر هم بیشتر باشد، خواص سیستم به حالت لوله ای نزدیکتر است.

راکتور بستر سیال Fluidized  Bed Reactor

نوع دیگری از راکتورهای کاتالیزوری، راکتور بستر سیال می باشد. در راکتور بستر سیال همانند راکتور مخلوط شونده، محتویات داخل راکتور اگرچه غیر متجانس می باشند ولی به خوبی با یکدیگر مخلوط شده و باعث توزیع یکنواخت دما در تمام نقاط راکتور می گردند. به دلیل توزیع مناسب حرارت در داخل این راکتورها مشکل نقاط داغ وجود ندارد. به دلیل ظرفیت بالا و کنترل حرارت خوب، این نوع راکتورها، کاربرد صنعتی زیادی پیدا کرده اند. از امتیازات برجسته این راکتورها سهولت احیا و جایگزین کردن کاتالیزور می باشد.

راکتور بستر ثابت Fixed Bed Reactor

راکتورهای بستر ثابت در واقع همان راکتورهای لوله ای پر شده از دانه های جامد کاتالیزور هستند . واکنش های غیر متجانس از نوع گازی و کاتالیزوری دراین نوع راکتورها انجام می گیرد . از معایب این نوع راکتورها مشکل کنترل حرارتی و مشکل جایگزینی کاتالیزور بعد از غیر فعال شدن آن می باشد. همچنین بعضی اوقات پدیده کانالیزه شدن مواد گازی در حین عبور از درون راکتور باعث کاهش زمان اقامت لازم برای انجام واکنش می شود که این خود یکی دیگر از محدودیت های این نوع راکتور می باشد. امتیاز این نوع راکتورها، درصد تبدیل بالای آن در واحد وزن کاتالیزور مصرف شده در مقایسه با سایر راکتورهای کاتالیزوری می باشد. از دیگر مزایای این راکتور قیمت پایین تر آن نسبت به راکتور های مشابه مخصوصاً راکتور بستر سیال می باشد.

راکتور پلیمریزاسیون Polymerization reactor

واکنشهای پلیمریزاسیون با توجه به تنوع تولیدشان از استفاده کننده های عمده راکتورها به شمار می روند. البته ساختار کلی راکتورها تفاوت چندانی با راکتورهای سایر مواد ندارد: اما با توجه به اهمیت این واکنشها، مطالبی در این مورد بیان می شود.

تعاریف و بیان تفاوتها در راکتورهای ناپیوسته (Batch Reactors):

تمامی اجزاء مخلوط واکنش به راکتور وارد می شوند و تا پایان واکنش در راکتور باقی می مانند. معمولاً در ابتدای پلیمریزاسیون در راکتورهای ناپیوسته یک گرم کن وجود دارد که طی آن دمای مخلوط به دمای لازم برای شروع واکنش افزایش داده می شود. سپس واکنش پلیمریزاسیون شروع شده و به علت گرمازایی قابل توجه آن دمای مخلوط واکنش می تواند افزایش یابد به همین دلیل در راکتورهای ناپیوسته باید قابلیت گرم و سرد کردن سریع و کافی و همچنین سیستم کنترل درجه حرارت موثر پیش بینی گردد. فرایندهای ناپیوسته برای پلیمریزاسیون با درجه تبدیل بالا مناسب است. از طرف دیگر این سیستمها برای بروز انفجار حرارتی مستعد هستند. فرایندهای ناپیوسته عمدتاً در زمینه پلیمریزاسیون رادیکالی به کار می روند.

راکتور نیمه ناپیوسته (Semi Continuous Reactors) یا (Semi Batch):

در راکتورهای نیمه پیوسته مواد برخی از مواد واکنش کننده ممکن است به تدریج به راکتور اضافه شوند یا آنکه محصولات جانبی تولید شده در طی واکنش از راکتور خارج گردند. در بسیاری از پلیمریزاسیونهای رادیکالی معمول است که منومر، حلال و یا شروع کننده را به منظور حفظ درجه حرارت و افزایش سرعت تولید به تدریج به راکتور اضافه می کنند . اضافه کردن تدریجی کومنومر در کوپلیمریزاسیون نیز وقتی که اختلاف فعالیت منومرها زیاد است از جمله کاربردهای این فرایند است. در پلیمریزاسیونهای نیمه پیوسته ممکن است که تمامی مواد واکنش کننده در ابتدای واکنش به راکتور اضافه گردند ولی قبل از تشکیل محصولات جانبی ، باید از راکتور خارج شو ند. پلیمریزاسیونهای مرحله ای از این نوع سیستمها هستند. تبخیر محصولات جانبی یک عامل موثر در جذب حرارت واکنش است که در برخی از موارد می تواند به قدری شدید باشند که باعث افت دمای واکنش گردد . در این حالت برای جبران حرارت از دست رفته حتی ممکن است نیاز به حرارت دهی نیز باشد .

راکتورهایی که برای فرایند نیمه پیوسته مورد استفاده قرار می گیرند مشابه با راکتورهای ناپیوسته است با این تفاوت که امکان افزایش مداوم مواد اولیه به آن و یا خروج محصولات جانبی از آن پیش بینی شده است. در راکتورهای پیوسته(Continuous Reactors)  مواد واکنش دهنده با شدت جریان ثابت به درون راکتور رانده شده و محصولات نیز به طور مداوم از راکتور خارج می گردند. پس از راه اندازی یک راکتور پیوسته، راکتور پس از عبور از یک حالت انتقالی به یک شرایط پایدار می رسد. در این شرایط شدت حرارت زائی سیستم نیز به مقدار ثابتی می رسد. فرایندهای مداوم عملیات آسان تر و هزینه کمتری دارد و هنگامی که ظرفیت تولید بالا باشد مورد استفاده قرار می گیرند. در موارد خاص پلیمریزاسیون در راکتورهای ناپیوسته که دارای انعطاف پذیری بیشتری برای تولید پلیمرهایی با درجا ت تبدیل مختلف هستند، انجام می گیرد.

فرایندهای پیوسته در راکتورهای همزن دار (Continuous Stirred Tank Reactors ,CSTR) و راکتورهای لوله ای (Tubular Reactor) قابل انجام است. راکتورهای همزن دار پیوسته مشابه با راکتورهای ناپیوسته هستند با این تفاوت که امکان ورود مداوم مواد اولیه به آنها و خروج محصول نهایی از آنها پیش بینی شده است.

از راکتورهای همزن دار پیوسته به صورت سری (Cascade) در صنعت برای پلیمریزاسیون امولسیونی مثل وینیل کلراید و وینیل استات استفاده می گردد. در راکتورهای لوله ای به منظور جذب حرارت آزاد شده، قطر راکتور همواره کوچک اختیار می شود.

در انتها در صورت داشتن هر سوال به متخصصین ما رجوع کنید.

گرایش های مهندسی شیمی

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

آشنایی با گرایش های ارشد مهندسی شیمی

در گذشته گرایش های مهندسی شیمی در مقطع کارشناسی بایستی انتخاب میشد. اما در حال حاضر هنگام ورود به مقطع کارشناسی ارشد گرایش مورد نظرتان را انتخاب می‌کنید.

در حال حاضر گرایش های ارشد مهندسی شیمی ، دارای ۱۹ گرایش است. از این تعداد، ۱۲ گرایش مرتبط با خود رشته مهندسی شیمی و ۷ گرایش نیز وابسته به رشته مهندسی شیمی هستند. منظور از وابسته این است که این گرایش‌ها، زیر مجموعه رشته‌های دیگر نیز هستند. به عنوان مثال گرایش مهندسی هسته‌ای – راکتور جزء گرایش‌های ارشد رشته مکانیک نیز می‌باشد.اکثر گرایش های مهندسی شیمی دارای ۳۲ واحد هستند که از این تعداد ۲ واحد مربوط به سمینار و ۶ واحد مربوط به پایان نامه کارشناسی ارشد است. در نتیجه در اکثر گرایش های مهندسی شیمی تعداد واحدهای مربوط به دروس تئوری برابر با ۲۴ واحد میباشد.

در ادامه توضیحاتی راجع به گرایش های ارشد مهندسی شیمی که به خود رشته مهندسی شیمی نیز مرتبط هستند، آورده شده است. در صورتی که نیاز به اطلاعات بیشتری درباره‌ی گرایش های ارشد مهندسی شیمی داشتید با مشاوران ما در ارتباط باشید.

گرایش های ارشد مهندسی شیمی که مرتبط با خود رشته مهندسی شیمی هستند عبارتند از:

مهندسی شیمی گرایش ترموسینتیک و کاتالیست

گرایش ترموسینتیک در واقع علمی است که تئوری‌های گذشته از قبیل ترمودینامیک غیرتعادلی و ترمواستاتیک را کامل می­کند. داوطلبان این گرایش میتوانند بر روی معادله سرعت واکنش­های تعادلی و غیرتعادلی و روش­‌هایی برای افزایش سرعت واکنش‌ها با استفاده از کاتالیست فعالیت کنند. در واقع این گرایش، بهترین گرایش ارشد مهندسی شیمی برای افرادی است که به دروس راکتورهای شیمیایی و ترمودینامیک علاقه‌مند هستند. در حال حاضر ۱۵ دانشگاه به جذب متقاضیان این گرایش می­پردازند که در مجموع ۱۲۳ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش فرایندهای جداسازی

داوطلبان این گرایش فنون و تکنیک‌هایی برای جداسازی ترکیبهای مهم موجود در صنایع شیمیایی را یاد می­گیرند. کمک به بهبود عملکرد جداسازی دربرج های جداسازی  نظیر برج‌های تقطیر، برج‌های جذب و دفع، جداسازی با غشا و … از ویژگی‌هاییست که فارغ التحصیلان این گرایش دارا می­باشند. گرایش فرایندهای جداسازی، بهترین گرایش ارشد مهندسی شیمی برای افرادی است که به دروس عملیات واحد علاقه‌مند هستند. یکی از نرم افزارهای مهمی که فارغ التحصیلان گرایش فرایندهای جداسازی آموزش می‌بینند، نرم افزار کامسول برای شبیه سازی دینامیکی است. در حال حاضر ۲۸ دانشگاه به جذب متقاضیان گرایش فرایندهای جداسازی می­پردازند که در مجموع ۳۶۱ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش طراحی فرایند

طراحی، ساخت و بهره‌برداری فرایندها برای تولید مقرون بصرفه یک محصول، وظیفه اصلی یک مهندسی شیمی است. به همین دلیل یک مهندسی شیمی را معمولا مهندس طراحی فرایند صنایع شیمیایی می­نامند. میتوان گفت گرایش طراحی فرایند متناسب‌ترین گرایش ارشد مهندسی شیمی برای یک تحصیل کرده مهندسی شیمی است. گرایش طراحی فرایند را میتوان یک گرایش چند بعدی از سایر گرایش های مهندسی شیمی از قبیل جداسازی، پدیده‌­های انتقال، صنایع پتروشیمی، صنایع غذایی و فراوری و انتقال گاز دانست. در واقع گرایش طراحی فرایند، بهترین گرایش ارشد مهندسی شیمی برای افرادی است که به دروس پدیده‌­های انتقال و  عملیات واحد علاقه‌مند هستند. مهمترین نرم افزارهای مهمی که فارغ التحصیلان گرایش طراحی فرایند آموزش می‌بینند، نرم افزار اسپن،نرم افزار هایسیس و نرم افزار مطلب  برای شبیه سازی و مدلسازی پدیده‌های موجود در صنایع شیمیایی است. در حال حاضر ۲۹ دانشگاه به جذب متقاضیان گرایش طراحی فرایند می­پردازند که در مجموع ۳۴۳ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش مدلسازی، شبیه سازی و کنترل

دانشجویان این گرایش می آموزند تا چگونه پدیده‌های موجود در صنایع شیمیایی را بصورت ریاضی بیان کنند. در واقع هدف از این گرایش ارشد مهندسی شیمی، کمک به یادگیری واموزش نرم افزار های مربوط به مهندسی شیمی  است. این گرایش، بهترین گرایش ارشد مهندسی شیمی برای افرادی است که به علوم کامپیوتر و یادگیری نرم افزارها علاقه‌مند هستند. در حال حاضر ۴ دانشگاه به جذب متقاضیان این گرایش می­پردازند که در مجموع ۳۸ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش محیط زیست

داوطلبان گرایش محیط زیست، فعالیت‌هایی برای بهبود شرایط جوی و محیط زیست انجام می‌دهند. به عنوان مثال در چند سال اخیر، ورود ریزگردها و کمبود آب از مسائل مهم زیست­‌محیطی موجود در ایران است. کمک به بهبود این وضع تنها از عهده‌ی مهندسان گرایش محیط زیست برمی‌آید. گرایش محیط زیست، بهترین گرایش ارشد مهندسی شیمی برای افرادی است که به فعالیت در زمینه تصفیه آب و کاهش ریزگردها علاقه‌مند هستند. همچنین گرایش محیط زیست، بهترین گرایش ارشد مهندسی شیمی برای تحصیل در خارج از کشور (اپلای) است. در حال حاضر ۱۰ دانشگاه به جذب متقاضیان گرایش محیط زیست می­پردازند که در مجموع ۷۱ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش پدیده های انتقال

یکی از گرایش های مهندسی شیمی گرایش پدیده های انتقال است. سه قانون فیزیکی اساسی در مهندسی شیمی، اصل بقای جرم، اصل بقای انرژی و اصل بقای اندازه حرکت هستند. مهندسان شیمی در این گرایش، اصول پدیده‌های انتقال را یاد می‌گیرند. در واقع مطالعه اصول و قواعد مربوط به پدیده‌های صنایع شیمیایی (انتقال جرم، انتقال حرارت و انتقال مومنتوم) از وظایف داوطلبان این گرایش است. در حال حاضر ۱۱ دانشگاه به جذب متقاضیان این گرایش می­پردازند که در مجموع ۱۱۲ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش فراوری و انتقال گاز

کمک به بهبود فراوری (افزایش تولید منابع گازی و استخراج آن)، یکی از اقدامات اصلی در حوزه‌­های گازی کشور است. از آنجایی که ایران چهارمین کشور ثروتمند جهان از نظر ذخایر سوخت‌های فسیلی بشمار می‌رود، این اقدامات اهمیتی چند برابر پیدا میکند. داوطلبان این گرایش تکنیک‌هایی برای انجام این اقدامات را یاد میگیرند. در حال حاضر ۵ دانشگاه به جذب متقاضیان این گرایش می­پردازند که در مجموع ۵۰ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش صنایع پتروشیمی

صنایع پتروشیمی، صنعت تولید فراورده‌های شیمیایی از قبیل سوخت‌های وسایل نقلیه، پلیمرها و حتی داروها از مواد خام نفتی است.یکی از حوزه‌هایی که نیاز مبرم به مهندسان شیمی دارد، پتروشیمی‌ها و پالایشگاه‌ها هستند. بدلیل سختی کار در این حوزه، در صورت جذب شدن در پتروشیمی‌ها از حقوق و مزایای بالایی برخوردار خواهید بود. در حال حاضر فقط دانشگاه امیرکبیر (واحد ماهشهر) به جذب متقاضیان این گرایش می­پردازد که در مجموع ۹ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش صنایع غذایی

داوطلبان این گرایش علم استفاده از تجهیزات و دستگاه­‌ها برای تولید فراورده‌های غذایی را می­‌آموزند. همانطوری که میدانید غذا یکی از اجزای جدانشدنی زندگی انسانهاست. تولید فراورده‌های غذایی مفید یا کمک به بهبود غذاهای موجود در بازار از اقداماتی است که مهندس صنایع غذایی انجام می­دهد. اما بایستی متذکر شویم که این گرایش یک گرایش تک بعدی است. از این جهت عرض میکنیم که در صورت تحصیل در این گرایش شما تنها میتوانید در حوزه­‌های مربوط به صنایع غذایی وارد بازار کار شوید. اما در صورتی که تحصیل‌کرده‌ی گرایش طراحی فرایند باشید، میتوانید در حوزه صنایع غذایی نیز فعالیت کنید. در نتیجه انتخاب گرایش صنایع غذایی یک ریسک است. در حال حاضر ۳ دانشگاه به جذب متقاضیان این گرایش می­پردازند که در مجموع ۱۲ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش نانوفناوری

نانوتکنولوژی، فناوری مدرن دنیای امروز است. با ورود نانو به دنیای امروز تجهیزات متنوعی وارد بازار شدند. از انواع این تجهیزات میتوان به نانوحسگرها، نانو راکتورها، نانو کاتالیست­ها اشاره کرد. از دیگر حوزه‌­هایی که نانو به آن ورود کرده، حوزه صنایع نفت و پتروشیمی است. امروزه میتوان با استفاده از علم نانو به استخراج بیشتری از نفت خام دست یافت. به عنوان مثال یک مهندس شیمی با داشتن دانش ترکیبی از حوزه نفت و حوزه نانوفناوری میتواند گامی بسوی پیشرفت در این حوزه­ بردارد و مشکلات بیشتری را ریشه­‌کن کند. در حال حاضر ۴ دانشگاه به جذب متقاضیان این گرایش می­پردازند که در مجموع ۳۸ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش پلیمر

در گذشته گرایش پلیمر یکی از زیرمجموعه‌های رشته مهندسی شیمی بود. اما در حال حاضر به عنوان یک رشته مستقل با دو گرایش صنایع پلیمر و تکنولوژی و علوم رنگ در دانشگاه‌ها و مراکز آموزش عالی ارائه می‌شود، البته هنوز نیز در شماری از دانشگاه‌های کشور مهندسی پلیمر یکی از گرایش‌های مهندسی شیمی است. در نتیجه اگر در دوران کارشناسی موفق به تحصیل در رشته پلیمر نشده‌­اید، میتوانید به عنوان یکی از گرایش های مهندسی شیمی در آن تحصیل کنید. در حال حاضر ۹ دانشگاه به جذب متقاضیان این گرایش می­پردازند که در مجموع ۶۹ داوطلب در این گرایش در دوره روزانه مشغول به تحصیل می­شوند.

مهندسی شیمی گرایش زیست پزشکی

گرایش زیست پزشکی از سال ۱۳۸۹ به دانشگاه‌ها و مراکز آموزش عالی ورود پیدا کرد. در واقع هدف از این گرایش کمک به درمان بیماری­ها با استفاده از علم شیمی است. به عنوان مثال یکی از اقدامات مربوط به این حوزه کمک به انتقال‌ دقیق‌تر داروها به همان نقطه از درد و درمان برخی از بیماریهای لاعلاج مانند سرطان است. در حال حاضر سه دانشگاه تهران، صنعتی شریف و تربیت مدرس در این گرایش داوطلب جذب می­کنند. از دروس اصلی این گرایش میتوان به مهندسی پلیمر، ریاضیات مهندسی پیشرفته، زیست مواد و پدیده های انتقال اشاره کرد. از دروس اختیاری این گرایش نیز میتوان به دروس سامانه های رهایش کنترل شده دارو، مهندسی بافت، ترمودینامیک پیشرفته، طراحی بیوراکتور، طراحی آزمایش ها، آزمایشگاه کشت بافت و آزمایشگاه عمومی پلیمر اشاره کرد.

گرایش های ارشد مهندسی شیمی که وابسته به رشته مهندسی شیمی هستند، عبارتند از:

مهندسی هسته ای گرایش مهندسی راکتور، مهندسی هسته ای گرایش مهندسی چرخه سوخت، مهندسی سیستم های انرژی، مهندسی سیستم های انرژی گرایش تکنولوژی انرژی، مهندسی سیستم های انرژی گرایش انرژی و محیط زیست، مهندسی سیستم های انرژی گرایش سیستم های انرژی و مهندسی انرژی های تجدیدپذیر.

پتاسیم نیترات چیست؟

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

پتاسیم نیترات یا شوره یک ترکیب شیمیایی با فرمول {\displaystyle KNO_{3}} {\displaystyle KNO_{3}} است. این ماده در محل‌هایی مانند دیوارهٔ غارها به صورت طبیعی به شکل گرد سفیدرنگی وجود دارد. پتاسیم نیترات یک اکسیدکننده تقریباً قوی است. نیترات پتاسیم آب را جذب می‌کند، بنابراین در محصولاتی مانند باروت که از شوره استفاده می‌شود در صورت قرارگیری در هوای آزاد رطوبت می‌گیرد و خراب می‌شود.

خصوصیات

فرمول مولکولی
KNO3
جرم مولی
101.1032 g/mol
شکل ظاهری
white solid
بوی
odorless
چگالی
2.109 g/cm3 (16 °C)
دمای ذوب
334 °C
دمای جوش
‎400 °C decomp.
انحلال‌پذیری در آب
13.3 g/100 mL (0 °C)
38.3 g/100 mL (25 °C)
247 g/100 mL (100 °C)
انحلال‌پذیری
slightly soluble in اتانول
soluble in گلیسیرین آمونیاک
اسیدی (pKa)
~7
ضریب شکست (nD)
1.5056
ساختار
ساختار بلوری
دستگاه بلوری راست‌لوزی آراگونیت

تولید :

نیترات پتاسیم را می‌توان با ترکیب نیترات آمونیوم و هیدروکسید پتاسیم تولید کرد.

NH4NO3 (aq) + KOH (aq) → NH3 (g) + KNO3 (aq) + H2O (l)

یک روش جایگزین برای تولید نیترات پتاسیم بدون یک محصول جانبی آمونیاک، ترکیب نیترات آمونیوم و کلرید پتاسیم است که به راحتی به عنوان یک جایگزین نمک بدون سدیم به دست می آید.

NH4NO3 (aq) + KCl (aq) → NH4Cl (aq) + KNO3 (aq)

نیترات پتاسیم نیز می‌تواند با خنثی کردن اسید نیتریک با هیدروکسید پتاسیم تولید شود. این واکنش بسیار اکسوترمی است.

KOH (aq) + HNO3 → KNO3 (aq) + H2O (l)

در مقیاس صنعتی توسط واکنش دو جابه جایی بین نیترات سدیم و کلرید پتاسیم تهیه می‌شود.

NaNO3 (aq) + KCl (aq) → NaCl (aq) + KNO3 (aq)

تهیه پتاسیم نیترات از کود کبوتر

به منظور تهیه پتاسیم نیترات به روش ساده تر، می توان از کود کبوتر استفاده کرد. به منظور انجام این فرایند، باید مقداری کود کبوتر را در ۱۰۰ گرم آب حل کرد. سپس این محلول را در ظرفی در بسته ریخته و به مدت ۲ ساعت در فریزر برای یخ زدن کامل قرار می دهند. در مرحله بعد قالب ماده شیمیایی یخ زده فوق را روی یک پارچه با قابلیت نفوذ مناسب آب قرار می دهند تا به طور کامل آب شود.

شایان ذکر است نباید آب گرم روی یخ گرفته شود. این خطا منجر به حل شدن بلور های این ماده شیمیایی می شود. برای به دست آوردن این ماده شیمیایی پس از آب شدن یخ مذکور، بلور های آن را از روی پارچه جمع آوری می کنند. سپس آن را در محلی گرم قرار می دهند تا کاملا خشک شوند.

درباره آمونیاک بیشتر بدانیم

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریتگروه مهندسی شیمی

آمونیاک با فرمول شیمیایی NH۳، در هوای شهرها و مجاورت توالت‌ها وجود دارد. در طبیعت از تجزیهٔ مواد آلی ازت دار همچون اوره ادرار به‌دست می‌آید. رومی‌های باستان آمونیوم کلرید را به عنوان پول و سپرده استفاده می‌کردند. آن‌ها سنگ آمونیوم را از مکانی به نام پرستشگاه ژوپیتر یا همان لیبی جدید جمع‌آوری می‌کردند.
فرمول: NH3
فرمول مولکولی: NH3
شکل مولکولی: Trigonal pyramid
گشتاور دوقطبی: 1.42 D
دمای جوش: ‎−33.34 °C, 240 K, -28 °F
مرتبط با nitrogen hydrides: هیدرازین; هیدرازوئیک اسید
دیگران این رومی‌های باستان آمونیوم کلرید را به عنوان پول و سپرده استفاده می‌کردند. آن‌ها سنگ آمونیوم را از مکانی به نام پرستشگاه ژوپیتر یا همان لیبی جدید جمع‌آوری می‌کردند. اما آمونیاک به شکل نمک آمونیاک نخستین بار توسط جابر ابن حیان در قرن ۸ شناخته شد.

تولیدگاز آمونیاک

روش‌های صنعتی
مهم‌ترین روش صنعتی تولید آمونیاک، فرایند هابر نام دارد که شامل تهیة آمونیاک از عناصر سازنده آن می‌باشد. در این روش، گازهای نیتروژن و هیدروژن در دمای بالا و در فشار زیاد با هم واکنش می‌دهند و آمونیاک را تولید می‌کنند. کاتالیزگرهای مختلف هم به سهولت این واکنش کمک می‌نمایندکاربرد


از موارد استفادهٔ آمونیاک می‌توان به استفاده در تهیهٔ کودهای شیمیایی، یخ سازی، اسید نیتریک، سایر ترکیبات نیتروژنه، مواد منفجره و نگهداری از مواد غذایی اشاره کرد.

یکی دیگر از کاربردهای آمونیاک می‌توان به استفاده در رشته ورزشی وزنه‌برداری و پاورلیفتینگ اشاره نمود. بوییدن این محلول باعث بازکردن عروق می‌شود و ورزش کار را تا حدودی عصبی می‌کند و در مهار کردن وزنه در مسابقات کمک می‌کند.

ساختار مولکولی

مولکول آمونیاک از یک اتم نیتروژن و سه اتم هیدروژن متصل به آن تشکیل شده‌است. با توجه به وجود یک جفت الکترون ناپیوندی بر روی نیتروژن، این مولکول ساختار هرم مثلثی دارد و زوایای پیوند کم‌تر از ۱۰۹ درجه هستند.[۷] مولکول آمونیاک یک مولکول قطبی است که می‌تواند با خودش و بسیاری مولکول‌های دیگر، پیوند هیدروژنی برقرار نماید.

خصلت بازی

آمونیاک طبق نظریه‌های اسید و باز برونستد-لوری و لوویس، یک ترکیب بازی محسوب می‌شود. pH محلول آبی آن هم بیش‌تر از ۷ است که این واقعیت را آشکار می‌سازد. واکنش زیر، خصلت بازی مولکول آمونیاک را توضیح می‌دهد

واکنش تفکیک بازی آمونیاک:

(NH3(aq) + H2O(l) → NH4+(aq) + OH-(aq