اکتشاف منابع نفتی در ایران و روش‌های استخراج آن

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

فعل وانفعالات تولید نفت

اکتشاف ذخایر نفتی در صنعت نفت مشکل ترین مرحله است. دانشمندان در زمینه علوم زمین از میلیون‌ها سال پیش روی موجودات میکروسکوپی و گیاهان و جانورانی که در اقیانوس‌ها زندگی می‌کردند مطالعه انجام داده‌اند.

این گیاهان و جانوران انرژی خورشید را جذب می‌کردند و اتمهای کربن را ذخیره می‌کردند. وقتی که این جانوران می‌میرند آنها ته دریا شناور می‌شوند و تولید رسوبات و نهشته‌هایی از اجساد می‌کنند. رسوبات در مناطق عمیق و عمیق تر اقیانوسها در معرض فشار بالایی قرار دارند. این نهشته‌ها در معرض گرمای درونی زمین نیز قرار می‌گیرند و اتمهای کربن را به یکدیگر متصل می‌کردند.

روش طبیعی

از این طریق گاز طبیعی و نفت به وجود می‌آید و داخل خلل و فرج و شکاف‌های سنگهای داخل زمین حرکت می‌کنند. این روش طبیعی برای تولید نفت خام است. نفت و گاز طبیعی در داخل تله‌های رسی و در پشت سنگهای متراکم قرار می‌گیرند. این قطره‌های نفتی پس از میلیون‌ها سال در سطح زمین می‌جوشند. در پشت ماسه سنگ‌ها و رس‌ها قرار می‌گیرند.

اشباع نفتی

اشباع نفتی در ماسه سنگ‌ها تقریباً غیر ممکن است و استخراج آن به هزینه بالا احتیاج دارد. زمین‌شناسان از طریق حفاری‌ها در مکان‌هایی که نشانه‌های نفتی وجود دارد به اکتشاف نفت می‌پردازند. تصاویر ماهواره‌ای و ماورای صوتی می‌تواند کمک به ترسیم نقشه‌های زیر سطحی کند. امروزه حتی نرم‌افزارهایی وجود دارد که می‌توان از این تصاویر نقشه‌های سه بعدی تهیه نمود. کامپیوتر‌ها و نرم‌افزارهای مرتبط کامپیوتری می‌توانند بهترین موقعیت را برای حفاری نفتی محاسبه کند.

استخراج نفت

استخراج نفت به مجموعه عملیاتی گفته می‌شود که در طی آن نفت خام به منظور استحصال و بهره‌برداری از آن، به طرق مختلف از داخل زمین خارج و قابل استفاده می‌شود. امروزه زمین‌شناسان با استفاده از دستگاه‌های لرزه‌نگاری موفق به شناسایی میادین نفتی شده و تیم‌های حفاری با حفر چاه نفت شرایط را برای شروع فعالیت تیم‌های استخراج نفت و نصب ادوات مخصوص آنها فراهم می‌آورند. گاز طبیعی و آب شور در اغلب مخازن نفتی در کنار نفت حضور دارند. تفکیک نفت موجود در مخزن با این قبیل ناخالصی‌ها یکی از مهمترین بخش‌های فعالیت استخراج‌کنندگان نفت است.

تاريخچه استخراج نفت

سابقه اکتشاف نفت در ايران به حدود 4000 سال پيش مي‌رسد، ايرانيان باستان به عنوان مواد سوختي و قيراندود کردن کشتي‌ها، ساختمان‌ها و پشت‌بام‌ها از اين مواد استفاده مي‌کردند. نادر شاه در جنگ با سپاهيان هند قير را آتش زد و مورد استفاده قرار داد در بعضي از معابد ايران باستان براي افروختن آتش مقدس از گاز طبيعي استفاده شده و بر اساس يک گزارش تاريخي يک درويش در حوالي باکو چاه نفتي داشته که از فروش آن امرار معاش مي‌کرده است.

روش‌هاي استخراج نفت

پس از عمليات حفر چاه و اصابت آن به مخزن نفت، به دليل فشار زياد موجود در مخزن، جريان نفت به سوي دهانه خروجي چاه سرازير مي‌شود. اين مرحله از استخراج كه عامل آن فشار داخل خود مخزن است به بازيافت اوليه نفت موسوم است. در برداشت اوليه نفت، از انرژي خود مخزن براي توليد نفت استفاده مي‌شود. البته اين بدان معنا نيست كه اگر نفت خود به خود به سطح زمين نيايد، برداشت اوليه وجود نخواهد داشت، بلكه وقتي از پمپ براي بالا آوردن نفت استفاده ميكنيم، در واقع هنوز در مرحله اول برداشت نفت قرار داريم. در اين مرحله انرژي خاصي وارد مخزن نمي‌شود.

شرایط ترمودینامیکی

با افزايش توليد و كاهش فشار، سرعت توليد نيز كاهش مي‌يابد تا اينكه فشار به حدي مي‌رسد كه ديگر نفت خارج نمي‌شود. در اين مرحله ممكن است از 30 تا 50 درصد كل نفت مخزن استخراج شود. مواردی که بر تولید میزان نفت موثر هستند فقط مربوط به فشار مخزن نیست.بلکه محل قرار‌گیری مخرن، دمای داخل مخزن و جنس سنگ‌های آن و…. نیز در میزان تولید نفت و استخراج آن تاثیر گذارند. میزان تولید نفت از روش اولیه به میزان گاز آزاد موجود در مخزن هم بستگی دارد. که هر چه این گاز بیشتر باشد تولید نفت از این روش بیشتر خواهد بود، دلیل این موضوع هم تغييرات حجم گاز در مقابل تغيير فشار بسيار زياد است.

وقتي مخزن تخليه شد و ما نتوانستيم نفت را حتي با پمپاژ از مخزن به چاه و از چاه به سطح زمين انتقال دهيم، در اين صورت استفاده از روشEOR1] از نوع بازيافت ثانويه شروع مي‌شود.كه براي استفاده از اين روش، امروزه در دنيا روش تزريق آب مرسوم است. در اين روش از چاه تزريقي، آب به مخزن تزريق ميشود و از چاه بهره‌برداري، نفت مورد بهره‌برداري قرار مي گيرد. در اين روش، ما با تزريق سيال در سيستم مداخله مي‌كنيم و سيال تزريقي، نفت را به طرف چاه توليدي هدايت مي‌كند.

تزریق گاز

البته به جاي آب، ميتوان گاز نيز تزريق كرد كه به آن فرايند تزريق گاز مي‌گويند. بايد توجه داشت كه استفاده از اين دو روش تزريقي با تزريق آب يا گازي كه به منظور حفظ و نگهداري فشار مخزن انجام مي‌گيرد متفاوت است. نکته قابل ذکر این است که پس از تزریق آب و گاز نفت را به جریان نمی‌اندازند و فقط وظیفه تنظیم فشار مخزن بر عهده این سیالات است.

در حالت ثانويه برداشت زماني فرا مي‌رسد كه، ما ضمن تزريق آب به مخزن،در چاه توليدي با توليد آب مواجه مي شويم. در اين حالت، چون نسبت آب به نفت زياد مي‌شود و توليد در اين صورت بازده اقتصادي ندارد، بايد از روش ديگر براي افزايش برداشت بهره بگيريم. از روش‌هاي مؤثر در مرحله دوم يكي سيلاب‌زني آبي و ديگري سيلابزني گازي يا تزريق گاز است.

روش سیلابزنی

در روش سيلابزني آبي، آب با فشار زياد در چاههاي اطراف چاه توليد نفت وارد مخزن شده و نيروي محركه لازم براي استخراج نفت را به وجود مي آورد. معمولا در اطراف هر چاه نفت چهار چاه براي تزريق آب وجود دارد. در روش سيلاب‌زني گازي، گاز (مانند گاز طبيعي ) با فشار زياد به جاي آب وارد مخزن شده و نفت را به طرف چاه خروجي به جريان مي‌اندازد.

نحوه تزريق گاز شبيه تزريق آب به صورت چاه‌هاي پنجگانه است. در مواردي كه گرانروي نفت خيلي بالا باشد از تزريق بخار آب براي استخراج مرحله دوم استفاده ميشود. تزريق بخار آب، دما را افزايش و گرانروي را كاهش مي‌دهد. در اين روش كه از بخار آب به جاي آب استفاده مي‌شود، با كاهش گرانروي نفت، جريان آن راحت‌تر صورت گرفته و سرعت توليد بالا مي‌رود.

پس از استخراج به كمك روش‌هاي مرحله دوم هنوز هم حدود 30 الي 50 درصد نفت ميتواند به صورت استخراج نشده در مخزن باقي بماند. در اينجاست كه استخراج نفت به كمك روش مرحله سوم صورت گيرد.

روش تزریق مایسلار

يكي از روش‌هاي مرحله سوم، تزريق محلول مايسلار (micellar solution) است كه پس از تزريق آن، محلول‌هاي پليمري به عنوان محلول‌هاي بافر به چاه تزريق مي‌شود. محلول مايسلار مخلوطي از آب، مواد فعال سطحي، نفت و نمك است. در روش‌هاي جديد تهيه محلول مايسلار، نفت، نمك و مواد كمكي فعال سطحي حذف گرديده‌اند. محلول‌هاي مايسلار نيروي تنش سطحي بين آب و نفت را كاهش مي‌دهد.

گرانروي محلول پليمري حدود 2 تا 5 برابر گرانروي نفت است. در حال حاضر از پلي اكريميدها و زيست‌پليمرها به عنوان پليمر در محلول بافر استفاده مي‌شود. مواد فعال سطحي معمولا سولفونات‌هاي نفتي سديم هستند و از لحاظ خواص و ساختار شيميايي شبيه شوينده‌ها مي‌باشند. از الكلها براي مواد كمكي فعال سطحي استفاده مي‌شود.

روش هایی دیگر

 يكي ديگر از روش‌هاي مرحله سوم، روش احتراق زير زميني است. طي اين روش اكسيژن موجود در هوا در زير زمين با هيدروكربن‌ها مي‌سوزد و مقداري انرژي و گاز توليد شده، فشار مخزن بالا مي‌رود. گرما همچنين گرانروي را كاهش داده و جريان نفت راحت‌تر صورت مي‌گيرد. يك روش ديگر مرحله سوم كه اخيرا مورد توجه قرار گرفته است، روش تزريق گاز كربن دي اكسيد است كه جزئي از روش جابجايي امتزاج پذير است.

گاز كربن دي‌اكسيد بسيار ارزان بوده، در نفت نيز حل ميشود و گرانروي ان را كاهش مي دهد. از روشهاي ديگر مرحله سوم انفجارهاي هسته اي در زير زمين است. كه اين انفجارها شكاف مصنوعي در سنگها به وجود مي آورد و جريان نفت را ساده‌تر مي‌كند. به اين‌گونه فرآيندها، مرحله سوم برداشت نف‍ت (Tertiary Oil Recovery) مي گويند.

تاریخچه اکتشاف و استخراج نفت در ایران

ویلیام ناکسی دارسی یک میلیونر استرالیایی، نخستین فردی بود که با روش‌های جدید روز و دستگاه‌های حفاری مکانیکی در ایران به اکتشاف نفت و حفر چاه پرداخت. او ابتدا گروهی فنی را به سرپرستی زمین‌شناسی به نام برلز استخدام و به ایران اعزام کرد. این گروه، پس از بررسی‌های زمین‌شناسی، گزارش رضایت‌بخشی داد. احتمال وجود نفت در حوالی قصرشیرین و شوشتر را زیاد و در دیگر نقاط امیدوار کننده دانست.

استعمار نفت ایران

پس از دریافت این گزارش، دارسی نماینده‌ای به نام ماریوت را در سال 1901 به دربار ایران فرستاد ماریوت امتیاز اکتشاف و استخراج نفت در تمام ایران، به جز پنج ایالات شمالی را از مظفرالدین شاه گرفت. چند ماه پس از امضای قرارداد، حفاری اولین چاه درمحلی به نام چیاسرخ یا چاه سرخ، در شمال غرب قصرشیرین آغاز شد. درتابستان 1903 در عمق 507 متری به گاز و کمی نفت رسید.

چاه دوم

چاه دوم هم در همین ناحیه در عمقی مشابه به نفت رسید. بهره‌دهی این چاه درحدود 175 بشکه در روز بود. دارسی با ارزیابی نتایج دریافت اگر در ناحیه چیاسرخ نفتی بیش از این مقدار هم بیابد به علت دوری از دریا و نبود امکان حمل به بازار مصرف، سودی عاید او نخواهد شد. ناحیه را ترک کرد و به خوزستان روی آورد.

منطقه چیارسرخ درمرزبندی‌های بعدی به دولت عثمانی واگذار شد و اکنون چیاسرخ یک میدان نفتی کوچک درعراق است.درمنطقه خوزستان اولین و دومین چاه حفر شده خشک بودند. در نیمه اول سال 1908 سرمایه شرکت روبه پایان بود و هنوز نفتی کشف نشده بود. روسای شرکت به مسئول عملیات که مهندسی به نام دینولدز بود دستور توقف عملیات را می‌دهد. ولی او که در محل وضع را بهتر ارزیابی کرده بود چند روزی از اجرای دستور خودداری و به حفاری ادامه می‌دهد.

اکتشاف نفت در ایران

درروز پنجم خرداد 1287 شمسی (1908 م) مته حفاری به لایه نفت‌دار برخورد و نفت با فشار از چاه فوران نمود. عمق چاه 360 متر بود. دومین چاه که ده روز بعد به نفت رسید 307 متر عمق داشت با به نفت رسیدن این دو چاه، وجود نفت به مقدار زیاد در ایران به اثبات رسید. پس از کشف نفت در ایران درسال 1909 شرکت سابق نفت ایران و انگلیس تشکیل شد.

از سال 1908 تا سال 1928 تمام نفت تولیدی ایران از میدان نفتی مسجدسلیمان استخراج شد. دراین سال میدان نفتی هفتکل، در سال 1930 میدان نفتی گچساران، درسال 1936 میدان نفتی آغاجاری و درسال 1938 میدان‌های نفتی لالی و نفت سفید کشف گردید. میدان نفت خانه را در عراق، در سال1927 شرکت نفت انگلیس و عراق کشف کرد. نیمی از این میدان درخاک ایران قرار دارد که اکنون نفت شهر نامیده می‌شود. با کشف این هفت میدان نفتی، حوزه مورد قرار داد شرکت نفت سابق ایران و انگلیس به صورت یکی از مناطق مهم نفتی جهان درآمد.

مسجد سلیمان در نفت

از سال 1908 تا سال 1928 تمام نفت تولیدی ایران از میدان نفتی مسجدسلیمان استخراج شد. دراین سال میدان نفتی هفتکل، در سال 1930 میدان نفتی گچساران، درسال 1936 میدان نفتی آغاجاری و درسال 1938 میدان‌های نفتی لالی و نفت سفید کشف گردید. میدان نفت خانه را در عراق، در سال1927 شرکت نفت انگلیس و عراق کشف کرد. نیمی از این میدان درخاک ایران قرار دارد که اکنون نفت شهر نامیده می‌شود. با کشف این هفت میدان نفتی، حوزه مورد قرار داد شرکت نفت سابق ایران و انگلیس به صورت یکی از مناطق مهم نفتی جهان درآمد.

اکتشاف نفت درخلیج فارس در اواخر دهه 1950 آغاز گردید و اولین میدان نفتی بهرگانسر درسال 1960 کشف گردید. دردهه 1960 بیش از ده میدان نفتی در بخش ایرانی خلیج‌فارس کشف گردد.

نفت در دوره معاصرایران

اموراکتشاف و استخراج شرکت ملی نفت ایران در سال 1347 میدان عظیم گازی خانگیران .و در سال 1360 میدان گازی گنبدلی را به ترتیب در غرب و جنوب شهر سرخس کشف کرد. در دهه 60 به دلیلی همزمانی با جنگ ایران و عراق، اکتشاف نفت با رکورد نسبی همراه بود. در این دوره امکانات اکتشاف صرف امور تولید شد و اکثر میدان‌های کشف شده مرتبط با فعالیت‌هایی است که قبل از انقلاب آغاز شده بود.

در دهه دوم بعد از انقلاب آهنگ فعالیت‌های اکتشافی به تدریج سرعت گرفت و امکانات بیشتری تخصیص داده می‌شد. با افزایش فعالیت‌ها در دهه سوم، مقدار نفت کشف شده در این دوره تقریباً دو برابر دوره قبل بود. از جمله مهم‌ترین اکتشافات در این دهه، کشف میدان گازی پارس جنوبی است که جزو بزرگترین میادین گازی کشف شده در جهان است

آنچه که باید در مورد جدول تناوبی بدانید

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

آنچه که باید در مورد جدول تناوبی بدانید

مقدمه

جدول تناوبی عنصرهای شیمیایی یا جدول مندلیف به انگلیسی: Periodic table یا periodic table of elements)، نمایش جدولی عنصرهای شیمیایی بر پایهٔ عدد اتمی، آرایش الکترونی و ویژگی‌های شیمیایی آن‌ها است. ترتیب جایگیری عنصرها در این جدول از عدد اتمی (شمار پروتون‌های) کمتر به سوی عدد اتمی بالاتر است. شکل استاندارد این جدول ۱۸ × ۷ است؛ عنصرهای اصلی در بالا و دو ردیف کوچکتر از عنصرها در پایین جای دارد. می‌توان این جدول را به چهار مستطیل شکست، این چهار بلوک مستطیلی عبارتند از: بلوک اس در سمت چپ، بلوک پی در راست، بلوک دی (فلزات واسطه) در وسط و بلوک اف (فلزات واسطهٔ داخلی) در پایین. ردیف‌های این جدول، دوره و ستون‌های آن، گروه های جدول تناوبی نام دارند. همچنین گاهی برخی از این گروه‌ها نام‌های ویژه‌ای دارند. برای نمونه گروه هالوژن‌ها و گازهای نجیب از آن جمله‌اند. هدف از ساخت جدول تناوبی، چه به شکل مستطیلی و چه به شکل‌های دیگر، بررسی بهتر ویژگی‌های شیمیایی عنصرها بوده‌است. این جدول، کاربرد زیادی در دانش شیمی و پردازش رفتار عنصرها دارد.
جدول تناوبی با نام دیمیتری مندلیف شناخته شده‌است، با اینکه پیشروان دیگری پیش از او وجود داشته‌اند. او این جدول را در سال ۱۸۶۹ منتشر کرد. این، نخستین جدولی بود که به این گستردگی مرتب شده بود. مندلیف این جدول را تهیه کرد تا ویژگی‌های دوره‌ای آنچه که بعدها «عنصر» نام گرفت را بهتر نشان دهد. وی توانسته بود برخی ویژگی‌های عنصرهایی که هنوز کشف نشده بود را پیش‌بینی کند و جای آن‌ها را خالی گذاشته بود. کم‌کم با پیشرفت دانش، عنصرهای تازه‌ای شناسایی شد و جای خالی عنصرها در جدول پُر شد. با شناسایی عنصرهای نو و گسترش شبیه‌سازی‌های نظری دربارهٔ رفتار شیمیایی مواد، جدول آن روز مندلیف بسیار گسترده‌تر شده‌است.
همهٔ عنصرهای شیمیایی از عدد اتمی ۱ (هیدروژن) تا ۱۱۸ (اوگانسون) شناسایی یا ساخته شده‌اند. دانشمندان هنوز به دنبال ساخت عنصرهای پس از اوگانسون هستند و البته این پرسش را پیش رو دارند که عنصرهای تازه‌تر چگونه جدول را اصلاح خواهند کرد. همچنین ایزوتوپ‌های پرتوزای بسیاری هم در آزمایشگاه ساخته شده‌است.

ویژگی های ظاهری جدول تناوبی

همهٔ نسخه‌های جدول تناوبی تنها دربردارندهٔ عنصرهای شیمیایی هستند و مخلوط، ترکیب یا ذرهٔ زیراتمی در آن‌ها جایی ندارد. هر عنصر شیمیایی یک عدد اتمی یکتا دارد و این عدد برابر با شمار پروتون‌ها در هستهٔ اتم آن عنصر است. اتم‌های گوناگون یک عنصر می‌توانند شمار نوترون‌های متفاوتی داشته باشند. در این حالت به آن‌ها ایزوتوپ گفته می‌شود. برای نمونه کربن سه ایزوتوپ طبیعی دارد. همهٔ ایزوتوپ‌های کربن ۶ پروتون، و بیشتر آن‌ها ۶ نوترون دارند؛ اما یک درصد آن‌ها ۷ نوترون و شمار بسیار کمتری از آن‌ها ۸ نوترون دارند. ایزوتوپ‌ها در جدول تناوبی به صورت جداگانه، نمایش داده نمی‌شوند؛ بلکه میانگین آن‌ها به عنوان جرم اتمی در زیر عنصر درج می‌شود. برای عنصرهایی که هیچ ایزوتوپ پایداری ندارند، جرم اتمی پایدارترین یا متداول‌ترین ایزوتوپ آن‌ها درون پرانتز نوشته می‌شود.
در جدول تناوبی استاندارد عنصرها به ترتیب عدد اتمی (شمار پروتون‌ها در هسته)، به صورت صعودی مرتب شده‌اند. هر ردیف تازه در جدول، که یک دوره یا تناوب نامیده می‌شود، با افزوده شدن نخستین الکترون به یک لایهٔ الکترونی تازه آغاز می‌شود. عنصرهایی که در یک ستون جدول (گروه) جای گرفته‌اند، همگی در لایهٔ آخر الکترونی خود دارای تعداد الکترون‌های برابر هستند؛ به عبارت دیگر آرایش الکترونی لایهٔ آخر آن‌ها یکسان است. مانند اکسیژن و سلنیم که هر دو در یک ستون هستند و هر دو چهار الکترون در لایهٔ بیرونی آرایش الکترونی خود یعنی تراز p دارند. عنصرهایی که ویژگی‌های شیمیایی مشابه دارند، معمولاً در یک گروه از جدول قرار می‌گیرند. اما در بلوک f عنصرهایی که در یک دوره هستند نیز ویژگی‌های مشابهی را نشان می‌دهند. در نتیجه به آسانی می‌توان ویژگی‌های شیمیایی یک عنصر را با آگاهی از عنصرهای پیرامونی‌اش پیش‌بینی کرد.
تا سال ۲۰۱۵، جدول تناوبی ۱۱۸ عنصر داشته‌است که ۱۱۴ عنصر به صورت رسمی از سوی اتحادیه بین‌المللی شیمی محض و کاربردی پذیرفته و نامگذاری شده‌اند. ۹۸ عنصر از مجموع ۱۱۸ عنصر در طبیعت یافت می‌شوند و از آن میان، ۸۴ مورد، عنصرهای پایدار یا دارای نیم‌عمر بیش از سن زمین هستند. در حالی که ۱۴ عنصر باقی‌مانده نیم‌عمر کوتاهی دارند یا به عبارت دیگر پرتوزا هستند. در حال حاضر، این عنصرها تنها بر اثر انجام واکنش هسته‌ای در عنصرهای دیگر به وجود می‌آیند و فراوانی ناچیزی دارند. تمام عنصرهای با عدد اتمی ۹۹ تا ۱۱۲ (که مابین اینشتینیم و کوپرنیسیم قرار دارند) و نیز دو عنصر فلروویوم و لیورموریوم، در طبیعت پدید نیامده‌اند، بلکه در آزمایشگاه ساخته شده‌اند. سپس آیوپاک آن‌ها را به‌طور رسمی پذیرفته‌است. گزارش شده که عنصرهای ۱۱۳، ۱۱۵، ۱۱۷ و ۱۱۸ هم در آزمایشگاه ساخته شده‌اند، اما هنوز آیوپاک آن‌ها را تأیید نکرده‌است. برای همین، این عنصرها هنوز بر پایهٔ عدد اتمی‌شان شناخته می‌شوند. تاکنون عنصری سنگین‌تر از کالیفرنیم (عنصر ۹۸) در طبیعت به صورت خالص در اندازهٔ قابل مشاهده، پیدا نشده‌است. تا سال ۲۰۱۸ هنوز عنصری با عدد اتمی بزرگتر از ۱۱۸ ساخته نشده‌است.

روش دسته‌بندی

عنصرها در جدول تناوبی به صورت افقی (چپ به راست) در دوره‌های ۱ تا ۷ و به صورت عمودی (بالا به پایین) در گروه‌های ۱ تا ۱۸ دسته‌بندی می‌شوند. هم‌چنین دسته‌بندی دیگری بر اساس لایهٔ الکترونی در حال پر شدن وجود دارد که بر اساس آن، عنصرها در بلوک‌های s و p و d و f قرار می‌گیرند.

گروه

یک گروه یا خانواده، یک ستون عمودی از جدول تناوبی است. عنصرهای یک گروه معمولاً ویژگی‌های نزدیک به هم بیشتری نسبت به عنصرهای یک دوره یا بلوک دارند. دانش مکانیک کوانتوم که دربارهٔ ساختار اتمی پژوهش می‌کند، نشان می‌دهد که چون عنصرهای موجود در یک گروه همگی از آرایش الکترونی یکسانی در لایهٔ آخر الکترونی برخوردارند؛  بنابراین ویژگی‌های شیمیایی مشابهی از خود نشان می‌دهند و هرچه عدد اتمی آن‌ها بالاتر می‌رود، این مشابهت‌ها افزایش پیدا می‌کند.  با این حال گاهی در بلوک d و f همانندی‌های عنصرهای یک دوره به اندازهٔ همانندی‌ها در یک گروه مهم هستند. به همانندی (شباهت) در یک دوره، همانندی افقی و در یک گروه، همانندی عمودی گفته می‌شود.
بر اساس یک قرارداد جهانی، گروه‌ها از ۱ تا ۱۸ شماره‌گذاری شده‌اند که گروه شمارهٔ یک را نخستین گروه از چپ (فلزهای قلیایی) و آخرین گروه را گروه نخست از راست (گازهای نجیب) در نظر گرفته‌اند. در گذشته، شمارهٔ گروه‌ها را با عددهای رومی نشان می‌دادند. همچنین در آمریکا برای گروه‌های بلوک اس و پی یک حرف A و برای عنصرهای بلوک دی یک حرف B در کنار شمارهٔ رومی گروه می‌گذاشتند. برای نمونه گروه چهار به صورت IVB و گروه چهاردهم (یا عنصرهای گروه کربن) به صورت IVA نمایش داده می‌شد. در اروپا هم همین روش به کار می‌رفت، با این تفاوت که حرف A برای گروه‌های پیش از گروه ۱۰ و حرف B برای عنصرهای گروه ۱۰ و گروه‌های پس از آن بکار می‌رفت. در سال ۱۹۸۸ آیوپاک سامانهٔ نام‌گذاری تازه‌ای را پیشنهاد کرد و روش‌های پیشین همگی فراموش شد.
ویژگی‌های عنصرهای یک گروه مانند شعاع اتمی، انرژی یونش و الکترون‌دوستی مشابه یکدیگر هستند. از بالا به پایین، شعاع اتمی عنصرها افزایش می‌یابد، در نتیجه الکترون‌های لایهٔ آخر در فاصلهٔ دورتری از هسته جای می‌گیرند، چون ترازهای انرژی بیشتری پُر شده‌اند. از بالا به پایین، انرژی یونش کاهش می‌یابد. چون الکترون‌ها کمتر به هسته پیوند خورده‌اند و آسان‌تر می‌توان آن‌ها را جدا کرد. با تحلیل مشابه، از بالا به پایین الکترون‌دوستی عنصرها کاهش می‌یابد. چون فاصلهٔ میان الکترون‌های لایهٔ آخر و هسته افزایش می‌یابد.  البته در این میان استثناهایی هم وجود دارد. برای نمونه در گروه ۱۱ الکترون‌دوستی از بالا به پایین افزایش می‌یابد.

دوره

یک دوره در جدول تناوبی، یک ردیف افقی از این جدول است. با اینکه عنصرها در یک گروه همانندی‌های بسیاری دارند، اما بخش‌هایی از دوره‌ها هستند که از اهمیتی بیش از گروه‌ها برخوردارند. مانند بلوک F، جایی که لانتانیدها و آکتینیدها دو مجموعهٔ افقی از عنصرهای جدول را می‌سازند.
عنصرها در یک دوره همانندی‌هایی از لحاظ شعاع اتمی، انرژی یونش، الکترون‌دوستی و الکترون‌خواهی (مقدار انرژی آزاد شده هنگامی که یک الکترون به یک مولکول یا اتم خنثی افزوده می‌شود) از خود نشان می‌دهند. در یک دوره از چپ به راست، شعاع اتمی کاهش می‌یابد. این پدیده، به این دلیل است که با افزایش عدد اتمی در یک دوره، شمار لایه‌های الکترونی ثابت است، اما شمار پروتون‌ها افزایش می‌یابد. برای همین الکترون‌ها بیشتر به سوی هسته کشیده می‌شوند. کاهش شعاع اتمی باعث افزایش انرژی یونش می‌شود (از چپ به راست). هرچه پیوندها در یک عنصر محکم‌تر باشد، انرژی بیشتری هم برای جداسازی یک الکترون نیاز است. الکترون‌دوستی مانند انرژی یونش رفتار می‌کند و از چپ به راست افزایش می‌یابد. چون کشش هسته بر روی الکترون‌ها افزایش می‌یابد. همچنین مقدار الکترون‌خواهی هم در طول یک دوره اندکی تغییر می‌کند. فلزها (عنصرهای سمت چپ دوره) معمولاً نسبت به نافلزها (سمت راست دوره) الکترون‌خواهی پایین‌تری دارند. این قانون برای گازهای نجیب برقرار نیست.

بلوک

چون لایهٔ آخر الکترونی از اهمیت ویژه‌ای برخوردار است، جدول تناوبی به بخش‌هایی وابسته به این لایه‌های الکترونی تقسیم شده‌است. به هر یک از این بخش‌ها یک بلوک می‌گویند. بلوک اس دربردارندهٔ دو گروه نخست جدول (فلزهای قلیایی و قلیایی خاکی) و دو عنصر هیدروژن و هلیم است. بلوک پی دربردارندهٔ شش گروه آخر جدول، گروه‌های ۱۳ تا ۱۸ آیوپاک (۳A تا ۸A در نامگذاری آمریکایی) است. همهٔ شبه‌فلزات و نافلزها در این بلوک جای می‌گیرند. بلوک دی دربردارندهٔ گروه‌های ۳ تا ۱۲ آیوپاک (۳B تا ۸B در نامگذاری آمریکایی) و همهٔ فلزات واسطه است. بلوک اف که بیشتر در پایین بدنهٔ اصلی جدول جای می‌گیرد دربردارندهٔ لانتانیدها و اکتینیدها است.

تاریخچه

در سال ۱۷۸۹ آنتوان لاووازیه فهرستی از ۳۳ عنصر شیمیایی را منتشر کرد. او این عنصرها را زیر نام‌های گازی، فلزی، نافلزی و خاکی دسته‌بندی کرده بود.  سپس در دههٔ ۱۷۹۰ یرمیا بنیامین ریشتر جدول وزن معادل را تهیه کرد. به این منظور، مقدار وزنی اسیدهایی که با یک مقدار مشخص باز ترکیب می‌شدند و نیز مقدار فلزهایی که با مقدار مشخصی اسید ترکیب می‌شدند را اندازه‌گیری کرد. در سال ۱۸۲۹ یوهان ولفگنگ دوبرآینر دریافت که بسیاری از عنصرها را می‌توان بسته به ویژگی‌های شیمیایی آنها، در دسته‌های سه‌تایی بخش‌بندی کرد. برای نمونه لیتیم، سدیم و پتاسیم را با هم در دستهٔ فلزهای واکنش‌پذیر نرم گذاشت. همچنین او متوجه شد که وقتی عنصرها را به ترتیب وزن اتمی دسته‌بندی می‌کند، وزن عنصر دوم (میانی) تقریباً برابر است با میانگین وزن عنصر پیش و پس از خود (عنصر اول و سوم). این پدیده به نام قانون سه‌تایی یا سه‌تایی دوبرآینر شناخته شد. شیمیدان آلمانی لئوپولد گملین با همین روش ادامه داد و تا سال ۱۸۴۳ توانست ده دستهٔ سه‌تایی، سه دستهٔ چهارتایی و یک دستهٔ پنج‌تایی را شناسایی کند. در سال ۱۸۵۷ ژان باتیست آندره دوما توانست ارتباط‌هایی میان دسته‌های گوناگون فلزها به دست آورد. تا این دوره شیمی‌دانان گوناگون توانسته بودند ارتباط‌های گوناگونی میان دسته‌های کوچک عنصرها به دست آورند؛ اما هیچ‌یک جدول کلی ارائه نکرده‌بودند.
در ۱۸۵۸ شیمیدان آلمانی فریدریش آگوست ککوله مشاهده کرد که کربن همواره با چهار اتم پیرامون خود پیوند برقرار می‌کند. برای نمونه در متان یک کربن با چهار هیدروژن پیرامون خود پیوند خورده‌است. این مفهوم کم‌کم با نام والانس یا الکترون‌های ظرفیت شناخته شد. منظور از والانس یک اتم، تعداد اتم‌هایی است که با آن اتم پیوند می‌خورند.
در ۱۸۶۲ یک زمین‌شناس فرانسوی به نام الکساندر-امیل بگویه دو شانکورتوآ یک نمای اولیه از جدول تناوبی را منتشر کرد و نام آن را «مارپیچ خاکی» یا «مارپیچ» گذاشت. او نخستین کسی بود که متوجه ویژگی‌های تناوبی عنصرها شد و آن‌ها را به ترتیب عدد اتمی از کمتر به بیشتر در یک استوانهٔ مارپیچ مرتب کرد. همچنین او نشان داد که عنصرهایی که ویژگی‌های مانند هم دارند در فاصله‌ای ثابت از هم قرار دارند (شمار عنصرهای میان آن‌ها همیشه ثابت است). جدول او برخی یون‌ها و ترکیب‌ها را هم دربرداشت. مقاله‌ای که او دربارهٔ جدول خود منتشر کرد، بیش از دانش شیمی، به مطالب مربوط به زمین‌شناسی پرداخته بود. برای همین تا پیش از جدول دیمیتری مندلیف توجه کمی را به خود جلب کرد.
در ۱۸۶۴ شیمی‌دان آلمانی، جولیوس لوتار میر جدولی ساخته‌شده از ۴۴ عنصر را بر پایهٔ الکترون‌های لایهٔ ظرفیت (والانس) ارائه کرد. این جدول نشان می‌داد که عنصرهایی که ویژگی‌های مانند هم دارند، معمولاً الکترون‌های ظرفیت برابر هم دارند. هم‌زمان شیمیدان انگلیسی، ویلیام آدلینگ هم جدولی ساخته‌شده از ۵۷ عنصر منتشر کرد. جدول آدلینگ بر پایهٔ وزن اتمی بود که چندین جای خالی و نکتهٔ غیرمعمول در آن دیده می‌شد. او متوجه مفهوم تناوبی بودن جرم اتمی در میان عنصرها و مسئلهٔ گروه‌بندی عنصرها در جدول شده بود  اما هرگز پیگیر ادامهٔ آن نشد. او در ۱۸۷۰ عنصرها را برپایهٔ الکترون‌های لایهٔ ظرفیت (والانس) مرتب کرد و به عنوان جدول پیشنهادی خود ارائه کرد.
شیمی‌دان انگلیسی جان نیولندز از سال ۱۸۶۳ تا ۱۸۶۶ مجموعه مقالاتی را منتشر کرد. او در این مقاله‌ها توضیح می‌داد که هنگامی که عنصرها به ترتیب از عدد اتمی کمتر به بیشتر مرتب شوند در دسته‌های هشت‌تایی ویژگی‌های فیزیکی و شیمیایی مشابهی را تکرار می‌کنند. او این تناوب و تکرار هشت‌تایی را به هشتگان‌های موسیقی همانند کرد. قانون هشتگان‌های نیولندز از سوی همکارانش احمقانه دانسته شد و جامعهٔ شیمی حاضر به انتشار کار او نشد.  برخلاف این برخورد، نیولندز داده‌های جدول هشتایی خود را جمع‌آوری کرد و از آن برای پیش‌بینی عنصرهای ناشناخته مانند ژرمانیم بهره برد.  جامعهٔ شیمی پنج سال پس از آنکه جدول تناوبی مندلیف به جهان معرفی شد، به کار نیولندز بها داد.
در سال ۱۸۶۷ یک شیمیدان زادهٔ دانمارک به نام گوستاووس هینریشس یک جدول تناوبی مارپیچ پیشنهاد کرد. این جدول برپایهٔ طیف اتمی، وزن و شباهت‌های شیمیایی بود. جدول او به عنوان کاری «منحصربه‌فرد»، «درخور توجه» و البته «تودرتو و پیچیده» دانسته شد. چنین توصیفاتی مانع از شناسایی و پذیرش عمومی جدول او شد.

جدول مندلیف

استاد روس شیمی، دیمیتری مندلیف و شیمی‌دان آلمانی، ژولیوس لوتار میر، هر یک به صورت مستقل جدولی را به ترتیب در سال‌های ۱۸۶۹ و ۱۸۷۰ منتشر کردند.  جدول مندلیف، نخستین نسخه از کار او بود؛ درحالی که جدولی که میر منتشر کرد، نسخهٔ گسترش یافتهٔ جدول پیشین او بود که در سال ۱۸۶۴ منتشر کرده بود.  هر دو نفر، عنصرها را در ردیف‌ها و ستون‌ها به ترتیب وزن اتمی فهرست کرده بودند. در هر دو جدول در آغاز یک ستون یا ردیف، ویژگی‌های عنصرها به صورت مرتب تکرار می‌شد.
مندلیف در این جدول دو انتخاب مهم انجام داده بود که باعث شد تا جدول او مورد پذیرش عمومی قرار گیرد: نخست اینکه جای عنصرهایی را که هنوز شناسایی نشده بود، خالی گذاشته بود.  مندلیف نخستین شیمی‌دانی نبود که چنین کرده بود، اما نخستین کسی بود که با توجه به ردپایی که از جدول داشت، جای عنصرها را پیش‌بینی کرده بود. عنصرهایی مانند گالیم و ژرمانیم عنصرهایی بودند که بعداً شناسایی شدند. انتخاب دوم مندلیف در جای‌گذاری و دسته‌بندی عنصرها بود، او گاهی ویژگی وزن اتمی را نادیده گرفته بود و به جای آن، عنصرها را با توجه به ویژگی‌های شیمیایی جای‌گذاری کرده بود. عنصرهایی مانند تلوریم و ید از این دست بودند. بعدها با پیشرفت علم معلوم شد که مندلیف نادانسته عنصرها را به ترتیب افزایش عدد اتمی و بار هسته مرتب کرده بود.
اهمیت عدد اتمی در جای‌گذاری عنصرها در جدول تناوبی نادیده گرفته می‌شد تا این‌که وجود و ویژگی‌های پروتون و نوترون در هسته شناسایی شد.

گسترش جدول تناوبی

مندلیف در سال ۱۸۷۱ جدول خود را به روز کرد و جزئیات بیشتری از عنصرهایی که جای آن‌ها را پیش‌بینی می‌کرد، ارائه داد. او باور داشت که این عنصرها وجود دارند، اما هنوز شناسایی نشده‌اند. با گذر زمان و شناسایی عنصرهایی که به صورت طبیعی یافت می‌شوند، جاهای خالی کم‌کم پر شد. باور عمومی چنین است که آخرین عنصر شناسایی شده‌ای که به صورت طبیعی پدید می‌آید، فرانسیم است که در سال ۱۹۳۹ شناسایی شد. مندلیف این عنصر را «اکا-سزیم» (اکا به معنی همانند) نامیده بود.  پس از آن، در سال ۱۹۴۰ عنصر پلوتونیم به صورت آزمایشگاهی تولید شد؛ اما در سال ۱۹۷۱ دانشمندان به این نتیجه رسیدند که این عنصر به صورت طبیعی ساخته می‌شود.
جدول تناوبی پرکاربرد امروزی  که به نام جدول تناوبی استاندارد یا جدول تناوبی متداول نیز شناخته می‌شود، جدولی است که به شیمی‌دان آمریکایی هوراس گرووز دمینگ نسبت داده می‌شود. دمینگ در ۱۹۲۳ دو نسخهٔ کوتاه (نسخهٔ مندلیفی و ۱۸ ستونی ) جدول تناوبی را منتشر کرد.  بعدها در سال ۱۹۲۸ نسخهٔ ۱۸ ستونی جدول دمینگ به صورت گسترده در دسترس مدرسه‌های آمریکا قرار گرفت. تا دههٔ ۱۹۳۰ جدول دمینگ در بسیاری از کتاب‌ها و دانشنامه‌های شیمی در دسترس بود. همچنین برای سال‌ها توسط انتشارات علمی سرجنت-ولچ منتشر می‌شد.
با پیشرفت دانش مکانیک کوانتوم و افزایش دانش دربارهٔ الکترون‌ها و نقش آن‌ها در اتم، روشن شد که جای‌گیری عنصرها در هر دوره (ردیف) از جدول تناوبی با پر شدن یکی از لایه‌های الکترونی همسنگ است. اتم‌های بزرگتر، الکترون‌ها و در نتیجه زیرلایه‌های بیشتری دارند. پس با افزایش شمارهٔ دوره، طول دوره‌های جدول بیشتر می‌شود.
در ۱۹۴۵، دانشمند آمریکایی گلن سیبورگ گفت که الکترون‌ها در اکتینیدها مانند لانتانیدها بلوک اف از لایه‌های الکترونی را پر می‌کنند. چرا که پیش از آن فرض می‌شد که الکترون‌های لایهٔ آخر این عنصرها در بلوک دی جای می‌گیرند. همکار سیبورگ به او توصیه کرد که چنین مطلبی را منتشر نکند و آیندهٔ کاری خود را به خطر نیندازد. با این حال، او پیشنهاد خود را ارائه داد که از سوی جامعهٔ علمی درست دانسته شد. سیبورگ به تلاش خود ادامه داد و در سال ۱۹۵۱ توانست جایزهٔ نوبل شیمی را به خاطر کار بر روی اکتینیدها از آن خود کند.

آشنایی با رشته شیمی آلی , ویژگی ها و کاربردهای آن

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

آشنایی با رشته شیمی آلی , ویژگی ها و کاربردهای آن

مقدمه

شیمی آلی زیر مجموعه‌ای از دانش شیمی است که دربارهٔ ترکیبات کربن یا مواد آلی سخن می‌گوید، عنصر اصلی که با کربن ترکیبات آلی را تشکیل می‌دهند، هیدروژن می‌باشد.
در گذشته به موادی که ریشه گیاهی یا حیوانی داشتند، مواد آلی (ارگانیک) می‌گفتند اما امروزه مواد آلی را می‌توان از طریق روش‌های صنعتی و آزمایشگاهی و به کمک مواد معدنی نیز سنتز کرد. در فرهنگ‌های فارسی معنای کلمه «آلی» مربوط به اندام‌های موجود زنده و هر موجودی که دارای آلات، اجزا، یا اندام‌های متعدد باشد، آمده است.
شیمی آلی شالوده زیست‌شناسی و پزشکی است. ساختمان موجودات زنده به غیر از آب، عمدتاً از مواد آلی ساخته شده‌اند، مولکول‌های مورد بحث در زیست‌شناسی مولکولی همان مولکول‌های آلی هستند. امروزه ما در عصر کربن زندگی می‌کنیم، هر روزه روزنامه‌ها و مجلات، ذهن ما را متوجه ترکیبات کربن نظیر کلسترول، چربی‌های اشباع نشده، هورمون‌ها، استروئیدها، حشره کش‌ها و فرومون‌ها می‌نماید. در دهه‌های گذشته به خاطر نفت، جنگ‌های متعددی راه افتاده‌است، همچنین دو فاجعه نازک شدن لایه اوزون که عمدتاً به خاطر وجود کلروفلوئوروکربن‌ها می‌باشد و پدیده گازهای گلخانه‌ای که ناشی از حضور متان، کلروفلوئوروکربن‌ها و دی‌اکسید کربن است، زندگی انسان‌ها را به خطر انداخته‌است.

ماهیت

موادی که از منابع آلی بدست می‌آیند، در یک ویژگی مشترک هستند و آن اشتراک در دارا بودن عنصر کربن است. دو منبع بزرگ مواد آلی که از آن‌ها مواد آلی با ترکیبات ساده، تأمین می‌شوند، نفت و زغال سنگ هستند، این دو ماده فسیلی در مفهوم قدیمی آلی بوده و حاصل تجزیه جانوران و گیاهان هستند. این ترکیبات ساده به عنوان مصالح ساختمانی، در ساختن ترکیبات بزرگتر و پیچیده‌تر مصرف می‌گردند. شیمی آلی، شیمی ترکیبات کربن با سایر عناصر به ویژه هیدروژن، اکسیژن، نیتروژن، هالوژن‌ها و غیر فلزات دیگر نظیر گوگرد و فسفر است. هم‌چنین فلزاتی مثل منیزیم، مس و پالادیم هم در برخی ترکیب‌های آلی حضور دارند. الکل‌ها، اترها، هیدروکربن‌ها، آلدئیدها، کتون‌ها، کربوکسیلیک اسیدها، ترکیبات آلیفاتیک حلقوی، ترکیبات آروماتیک (مانند بنزن)، آمین‌ها، فنل‌ها، درشت مولکول‌ها و بسپارها (پلیمر) و نظیر آن‌ها جزء مواد آلی بوده و مباحث شیمی آلی را به خود اختصاص داده‌اند.

کاربردها

امروزه از مواد آلی و دانش شیمی آلی در رنگ سازی، کاغذ و جوهرسازی، مواد غذایی، پوشاک، پتروشیمی، مواد پلاستیکی و لاستیکی، داروسازی، پزشکی و ده‌ها صنعت دیگر بهره می‌برند. افزون بر بیست میلیون ترکیب شناخته شدهٔ کربن وجود دارد و هر ساله نیم میلیون مولکول جدید به خانواده مواد آلی اضافه می‌شوند.

ساختمان و ویژگی های مواد آلی

آرایش و درشتی مولکول‌های مواد آلی
تا حدود سال ۱۸۵۰ میلادی بسیاری از دانشمندان بر این باور بودند که منشأ مواد آلی، جانداران و گیاهان هستند، آن‌ها تصور می‌کردند که مواد آلی را هرگز نمی‌توان از مواد معدنی و غیر آلی تولید نمود. دانشمندان همواره دنبال پاسخ به این پرسش بودند که چه ویژگی در ترکیبات کربن وجود دارد که آن‌ها را از ترکیبات مربوط به صد و چند عنصر دیگر جدول تناوبی متمایز کرده‌است. تعداد بسیاری از ترکیبات کربن وجود دارند که مولکول‌های آن‌ها می‌توانند بسیار بزرگ و پیچیده باشند. تعداد ترکیباتی که دارای عنصر کربن هستند چندین برابر بیشتر از تعداد ترکیبات بدون کربن است. مولکول‌های آلی شامل هزاران اتم شناخته شده‌اند و ترتیب قرار گرفتن اتم‌ها حتی در مولکول‌های نسبتاً کوچک نیز بسیار پیچیده‌است.
ویژگی منحصر به فرد کربن

اتم‌های کربن می‌توانند به میزانی که برای اتم هیچ عنصر دیگری مقدور نیست، به یکدیگر متصل شوند. همچنین اتم‌های کربن می‌توانند زنجیرهایی شامل هزاران اتم یا حلقه‌هایی با اندازه‌های متفاوت ایجاد نمایند، زنجیرها و حلقه‌ها می‌توانند دارای شاخه و پیوندهای عرضی باشند، به اتم‌های کربن این زنجیرها و حلقه‌ها، اتم‌های دیگری نیز می‌تواند وصل شود، این اتم‌ها معمولاً هیدروژن، فلوئور، کلر، برم، ید، اکسیژن، نیتروژن، گوگرد، فسفر و سایر اتم‌های مختلف می‌باشند. هر آرایش مختلف از اتم‌ها مربوط به ترکیب متفاوتی است و هر ترکیب یک سری خواص شیمیایی و فیزیکی خاص خود را دارد، از این رو غیرمنتظره نیست که امروزه ده‌ها میلیون ترکیب شناخته شده کربن وجود داشته باشد.

پیوند شیمیایی

بررسی ساختمان مولکول‌ها را باید با بحث دربارهٔ پیوندهای شیمیایی یعنی نیروهایی که اتم‌ها را در یک مولکول نگاه می‌دارند، شروع نمود. دو نوع پیوند یونی و کووالانسی، پیوندهایی هستند که به وسیله آن اتم‌ها با یکدیگر اتصال برقرار می‌کنند. از میان این دو پیوند، پیوند کووالانسی، پیوند متداول در ترکیبات کربن است و مهمترین پیوند در مطالعه شیمی آلی است.

بازارکار

مشاغل زیر به طور مستقیم به این رشته تحصیلی ارتباط دارد و دانش آموختگان در صورت فعالیت در این شغل بیشترین ارتباط را بین رشته تحصیلی و شغل خود برقرار خواهند کرد :
شیمی دان پژوهشگر استاد دانشگاه معلم
همچنین برخی از مشاغل، ظرفیت جذب افراد مختلف از تخصص های گوناگون را دارا می باشند. در این مشاغل، هر فرد علاوه بر تسلط بر مهارت های مربوط به آن شغل، لازم است به فراخور صنعت و نوع کسب و کاری که در آن مشغول به کار است، دارای دانش تخصصی مربوطه نیز باشد: 
کارشناس / مدیر آموزش کارگزار بیمه

معرفی رشته شیمی تجزیه و کاربرد آن

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

معرفی رشته شیمی تجزیه و کاربرد آن

معرفی شیمی تجزیه :

شیمی تجزیه (Analytical Chemistry) یکی از زیر شاخه های مهم و کاربردی علوم پایه شیمی است که به مطالعه تشخیص ، جداسازی و تعیین یک یا چند گونه شیمیایی میپردازد.

انواع آنالیز:

1.تجزیه کمی :

در تجزیه کمی مقدار یا غلظت دقیق مواد تعیین میشود.

2.تجزیه کیفی :

در تجزیه کیفی هدف شناسایی مواد و نوع اجزای ماده است.
“به طور کلی تجزیه کیفی بر تجزیه کمی مقدم است یعنی ابتدا نوع اجزای یک نمونه و بعد مقدار کمی آنها تعیین میشود.”

روش های آنالیز :

1. تجزیه کلاسیک :

مهم ترین روش های تجزیه کلاسیک روش های وزن سنجی و روش های تیتراسیون هستند که از ابزار های چنان پیشرفته ای استفاده نمی شود.به عنوان مثال روش وزن سنجی رسوبی که دقیق ترین روش تجزیه کمی ماکرو است که در این روش جسم مورد تجزیه به صورت انتخابی به رسوبی کم محلول تبدیل شده و پس از صاف کردن و شست و شو با حلال مناسب برای خارج کردن ناخالصی ها ، خشک یا سوزانده شده و در کوره به محصولی پایدار و ثابت تبدیل میشود و پس از سرد کردن در خشکانه نمونه توزین شده  و مقدار آن تعیین میشوند مانند اندازه گیری آهن به صورت آهن (III) اکسید (Fe2O3) یا اندازه گیری یون نیکل (ΙΙ) با استفاده از شناساگر دی متیل گلی اکسیم(DMG) ,… .

2.تجزیه دستگاهی :

در این روش از ابزار ها و دستگاه های پیشرفته تر استفاده میشود که از جمله این روش ها میتوان روش های کروماتوگرافی ، روش های طیف سنجی و روش های الکتروشیمی را نام برد.

تاریخچه شیمی تجزیه :

شیمی تجزیه از همان آغاز پیدایش علم شیمی مهم بوده است، و شامل روش هایی برای تعیین اینکه کدام عناصر و مواد شیمیایی در نمونه ماده مورد نظر وجود دارد، است. در طول این دوره، کمک های مهم در شیمی تجزیه شامل تجزیه و تحلیل عناصر سیستماتیک توسط جاستیوس وون لیبیگ (Justus von Liebig) ارائه شد.
اولین تجزیه و تحلیل ابزاری ، طیف سنجی انتشار شعله ای بود که توسط دو دانشمند معروف رابرت بونزن (Robert Bunsen) و گوستاوکیرشووف (Gustav Kirchhoff) صورت گرفت و باعث کشف روبیدیوم (Rb)و سزیم (Cs) در سال1860  شد.
بیشتر تحولات عمده در شیمی تجزیه پس ازسال 1900 اتفاق افتاد . در طول این دوره، تجزیه و تحلیل ابزاری به طور مداوم در این زمینه گسترش یافت . به ویژه، بسیاری از تکنیک های اولیه اسپکتروسکوپی و اسپکترومتریک در اوائل قرن بیستم کشف شده و در اواخر قرن بیستم تصحیح شد.

مفاهیم پایه شیمی تجزیه :

– نمونه : قسمتی از ماده که عمل تجزیه تحلیل وآنالیز بر روی آن انجام میگیرد.
-آنالیت : بخشی از نمونه است که بررسی و اندازه گیری کمی بر روی آن انجام میشود.

معرفی روش های کلاسیک :

1.روش های وزن سنجی (Gravimetric Methods)
– روش های تجزیه الکتریکی
– روش های رسوبی
– روش های استخراج یا تبخیر
– روش های فیزیکی متفرقه
2.روش ها حجم سنجی (Volumetric Methods)
– تیتراسیون های خنثی شدن اسید و باز
– تیتراسیون های اکسایش کاهش
– تیتراسیون های رسوبی
– تیتراسیون های کمپلکس سنجی
3.روش های الکترو شیمیایی (Electrochemical Methods)
– اندازه گیری شدت جریان
– اندازه گیری تغیرات ولتاژ
– اندازه گیری رسانایی الکتریکی
– اندازه گیری تغییرات مقاومت
4.روش های طیف سنجی (Spectroscopic Methods)
طیف سنجی جذب مولکولی
– طیف سنجی جذب اتمی
– طیف سنجی نشری
– طیف سنجی فلوئورسانس مولکولی

کاربرد های شیمی تجزیه :

1. کنترل کیفیت محصول:
اکثر صنایع تولیدی باید دارای استاندارد و کیفیت یکنواخت باشند. برای اطمینان از استاندارد و کیفیت مواد اولیه و محصول نهایی تولید شده آزمایش های تجزیه شیمیایی گسترده ای انجام می شود.
2.نمایش و کنترل کننده آلوده کننده ها :
بیشتر محصولات شیمیایی نیاز به کنترل و تعیین آلودگی که ایجاد میکنند دارند مانند حشره کش های آلی کلر دار و فلزات سنگین پسماندهای صنعتی به این منظور به یک روش حساس و صحیح نیاز است که تجزیه شیمیایی این کار را ممکن ساخته است.
3.مطالعات پزشکی و بالینی :
اندازه گیری کمی و کیفی عناصر و ترکیبات مختلف مایعات بدن و خون توسط تجزیه های شیمیایی صورت میگیرد که در آزمایشگاه ها بسیار حائز اهمیت است. مانند اندازه گیری قندخون ، اندازه گیری فلزات سنگین مانند (جیوه ، آرسنیک ، کروم، کادمیم ، نیکل ، سرب ، آلومینیم ، مس ، روی و…)
4.عیار سنجی :
در برخورد با سنگ های خام تعیین ارزش سنگ های قیمتی درون آن در تجارت بسیار مهم است به طوری که تغییرات خیلی کم غلظت در ارزش تجاری آنها تاثیر گذار است. بنابراین انتخاب یک روش دقیق و صحیح تجزیه ای در تعیین عیار این سنگ ها بسیار مهم است.
5. صنایع داروسازی :
شیمی تجزیه یکی از مهمترین عوامل در تولید داروهای مورد نیاز می باشد.
6. اندازه گیری سختی موقت و دائم آب :
در این روش مقدار کلسیم موجود در آب را اندازه میگیرند. اساس اندازه گیری کلسیم در حضور منیزیم پایدار تر بودن کمپلکس(Ca(EDTA نسب به (Mg(EDTA است. EDTA ابتدا با Ca2+ وسپس باMg2+کمپلکس تشکیل میدهد.

هدف شیمیدان های تجزیه :

بسیاری از متخصصان شیمی تجزیه بر روی یک نوع ماده و ابزار تمرکز می کنند. دانشگاهیان تمایل دارند تا برنامه های جدید و اکتشافات و یا روش های جدید تجزیه و تحلیل تمرکز کنند. کشف یک ماده شیمیایی موجود در خون که خطر ابتلا به سرطان را افزایش می دهد، کشفی است که ممکن است یک شیمیدان تجزیه درگیر آن  باشد.
بطور کل شیمی تجزیه یکی از اساسی ترین زیر شاخه های شیمی است که در تمام صنایع قابل مشاهده است و یک شیمیدان تجزیه به دنبال روش های جدید اندازه گیری ، جداسازی و شناسایی مواد شیمیایی است تا بتواند روش های سریع و ارزان برای اندازه گیری آنالیت موجود در نمونه ها و مواد شیمیایی ارائه دهد.