انواع برج های جداسازی

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

انواع برج های جداسازی:

یکی از مهم ترین تجهیزات فرآیندی که در صنایع مربوط به نفت و گاز وجود دارد، برج های جداسازی می باشند. کار این تجهیزات، جداسازی اجزای موجود در یک ترکیب می باشد که هر کدام از این اجزاء می توانند ارزش بسیار بالایی در مقایسه با ترکیب اولیه داشته باشند. در این قسمت به معرفی انواع برج های جداسازی می پردازیم. جداسازی برای مخلوط های همگن و غیر همگن صورت می گیرد.

 اگر مخلوطی که جداسازی می شود همگن باشد، جداسازی می تواند تنها با افزودن و یا ایجاد فاز دیگری درسیستم انجام شود. به عنوان مثال در جداسازی یک مخلوط گازی، فاز دیگر می تواند به وسیله چگالش جزئی انجام شود. در صورتیکه یک مخلوط ناهمگن داشته باشیم، جداسازی می تواند به طور فیزیکی و با استفاده از تفاوت دانسیته بین فازها انجام گیرد.

اساس کار برج ها افزایش سطح تماس بین فازها می باشد که این افزایش ممکن است توسط سینی یا پرکن تامین شود. برج های جداسازی به سه روش پیوسته، نیمه پیوسته و غیرپیوسته عمل می کنند. جداسازی فازی درون برج ها به صورت فازهای جزئی زیر انجام می گیرند:

بخار-مایع، مایع-مایع، جامد-مایع، جامد-گاز و جامد-جامد.

دستگاه های بکار رفته در عملیات گاز- مایع به دو دسته زیر تقسیم می شوند:

    ۱- دستگاه هایی که در آن ها گاز پراکنده می شود:

مخازنی که در آن ها حباب گاز ایجاد می شود، مخزن مجهز به همزن و انواع برج های سینی دار را می توان در این دسته قرار داد. در این دستگاه ها فاز گاز به صورت حباب یا کف در فاز مایع پراکنده می شوند.

    ۲- دستگاه هایی که در آن ها فاز مایع پراکنده می شود:

این گروه شامل دستگاه هایی می شود که در آن ها مایع به صورت یک فیلم نازک و یا به صورت قطره ای درآمده و در فاز گاز پراکنده می شود. در این میان برج های دیواره مرطوب، برج های پاششی و ستون های پر شده را می توان نام برد.

معمولاً برج های جداسازی، بر اساس عملیات انتقال جرمی که بین فازها انجام می شود، به صورت زیر تقسیم بندی می شوند.

الف – برج های تقطیر

ب – برج های استخراج

ج – برج های جذب و دفع

برج های تقطیر(Distillation Columns):

تقطیر از جمله مهم ترین فرآیندهای جداسازی است که اساس جداسازی در آن اختلاف نقطه جوش اجزاء مخلوط می باشد.فرآیند تقطیر از روش های مستقیم جداسازی به شمار می رود. عمل تقطیر با استفاده از حرارت دادن به یک مخلوط و سرد کردن بخارات حاصل انجام می شود. به طور کلی یک برج تقطیر شامل چهار بخش زیر می باشد:

  1. بدنه اصلی برج (Tower)
  2. سیستم جوشاننده یا ریبویلر (Reboiler)
  3. سیستم میعان کننده یا کندانسور (Condenser)
  4. تجهیزات جانبی از جمله سیستم های کنترلی، مبدل های حرارتی میانی، پمپ ها، مخازن و…

معرفی انواع برج های جداسازی

به طور کلی برج هایی که در صنعت برای تقطیر به کار می روند، به صورت ۲ نوع زیر می باشند:

  1. برج های سینی دار (Tray Towers)
  2. برج های پر شده (Packed Towers)

برج های تقطیر سینی دار (Tray Distillation Towers):

برج های سینی دار مهم ترین نوع برج هایی هستند که در مراکز مهم صنعتی مانند پالایشگاه ها از آنها استفاده می شود.داخل این برج ها به فواصل معینی صفحه های فلزی سوراخ داری قرار داده شده است که به آن ها سینی گفته می شود. این برج ها به ارتفاع های مختلفی ساخته می شود که ممکن است از چند متر تا بیش از ۵۰ متر متغیر باشد. قطر این برج ها نیز ممکن است تا بیش از ۵ متر هم در نظر گرفته شود. برج های تقطیر می توانند سیستم ریبویلر و کندانسور داشته باشند و یا نداشته باشند.

درون برج، جریان های مایع و گاز بصورت غیر همسو روی این سینی ها با یکدیگر در تماس قرار می گیرند و انتقال جرم روی سینی رخ می دهد. جریان مایع به شکل افقی روی سینی حرکت کرده و توسط ناودانی هایی به سمت پایین (سینی بعد) می ریزد. جریان گاز نیز از پایین و توسط منافذ روی سینی، به سمت بالا حرکت می کند و به شکل حباب در مایع پخش می شود.سپس حباب ها از مایع جدا شده و به سمت بالا حرکت می کنند. ریبویلر حرارت لازم برای بخار شدن مایع در پایین برج را فراهم می کند و کنداسور بخار خروجی از بالای برج را مایع می کند.

مهم ترین پارامتر در طراحی یک برج تقطیر، تعداد مراحل تئوری آن می باشد. بر اساس آن تعداد سینی و همچنین ارتفاع برج مشخص می گردد. از دیگر پارامترهای مهم یک برج سینی دار می توان به فاصله سینی ها، عمق مایع روی سینی ها، نوع منافذ روی سینی، پروفایل فشار و دمای برج، سینی خوراک و… اشاره کرد. برج های سینی دار را بر اساس نوع منافذ روی سینی می توان به ۳ نوع زیر تقسیم کرد:

    ۱- سینی های غربالی (Sieve Tray):

سینی های غربالی، صفحات مشبک می باشند که بخارات از منافذ آن عبور کرده و به صورت حباب هایی وارد مایع روی سینی می شوند. این سینی ها نسبت به دو نوع دیگر بسیار ارزان بوده و ظرفیت بالاتری دارند. مزیت دیگر این سینی ها افت فشار کم آنها است که مجموعاً باعث شده که در طراحی ها در صورتی که مشکل عمده ای در میان نباشد به عنوان اولین انتخاب در نظر گرفته شود.

معرفی انواع برج های جداسازی

تصویر سمت راست سینی یک پاس گذر و تصویر سمت چپ سینی دو پاس گذر می باشد

   ۲- سینی دریچه ای (Valve Tray):

این سینی ها نیز صفحات سوراخ دار می باشند که هر سوراخ مجهز به یک صفحه کوچک (دیسک) متحرک می باشد. سوراخ های سینی می تواند مدور یا مستطیل باشد. در دبی کم بخار، صفحه بر روی سوراخ مستقر شده و آن را به نحوی می پوشاند که مایع چکه نکند. دریچه منافذ در ۲ نوع ثابت و متحرک ساخته می شوند. با افزایش دبی بخار دریچه در امتداد قائم به طرف بالا حرکت کرده و مجرا را برای عبور بخار باز می کند. این سینی ها قیمت مناسبی دارند و نسبت به تغییرات دبی بخار انعطاف پذیر می باشند.

معرفی انواع برج های جداسازی

تصویر سمت راست دارای دریچه های متحرک و تصویر سمت چپ دارای دریچه های ثابت می باشد

معرفی انواع برج های جداسازی

تصویر فوق نحوه عملکرد سینی دریچه ای را نشان می دهد

    ۳- سینی های فنجانی (Bubble Cap Tray):

این سینی متشکل از یک صفحه مشبک است که روی هر سوراخ یک لوله هدایت گاز به بالا و یک فنجان وارونه روی آن وجود دارد. در سینی فنجانی معمولاً لایه ای از مایع بر روی سینی باقی می ماند و گاز خروجی از زیر فنجان باید از داخل این لایه عبور کند. شکاف های روی هر فنجان، مستطیلی با عرض ۰٫۳ تا ۰٫۹۵cm و طول ۱٫۳ تا ۳٫۸cm می باشد. از مزایای این سینی ها این است که اولاً نشتی مایع از طریق سوراخ های سینی وجود ندارد ، همچنین در دبی های بسیار کم گاز به خوبی عمل می کند.

معرفی انواع برج های جداسازی

تصاویر بالا شکل سینی های فنجانی را نشان می دهد

معرفی انواع برج های جداسازی

تصویر فوق نحوه عملکرد سینی فنجانی را نشان می دهد

برج های تقطیر پر شده (Packed Bed Distillation Tower):

طرز کار برج های پر شده به همان صورت برج های سینی دار می باشد، با این تفاوت که در برج های پر شده سینی وجود ندارد بلکه تمام برج از اجسامی با جنس و شکل معین پر شده است که به این اجسام پرکن (Packing) می گویند. پرکن ها عموماً بر دو نوع منظم و نامنظم تقسیم بندی می شوند؛ پرکن های منظم در برخی موارد حتی بر سینی ها نیز برتری دارند. 

در این برج ها نیز همانند برج های سینی دار مایع از بالا و گاز از پایین جریان پیدا می کند. توزیع مایع در برج های پرکن حائز اهمیت بسیاری است زیرا توزیع ناهمسان موجب خشک ماندن برخی قسمت های بستر و در نتیجه کاهش راندمان تماس گاز -مایع می شود. جهت نگه داشتن بستر پرکن یک سینی زیرین و برای جلوگیری از انبساط بستر یک سینی بالایی در برج های پرکن تعبیه می شود.معرفی انواع برج های جداسازیچند نمونه از پرکن های منظممعرفی انواع برج های جداسازیچند نمونه از پرکن های نامنظم پرکن های منظم دارای برتری های زیر نسبت به برج های سینی دار می باشد:

    1. افت فشار بسیار کمتر

پرکن ها باید خصوصیات زیر را داشته باشند:

    1. سطح تماس زیادی بین مایع و گاز ایجاد کند

برج های استخراج (Extracting Towers):

در استخراج مایع- مایع دو فاز را باید در تماس با یکدیگر قرار داد تا عمل انتقال جزء مورد نظر انجام شده و سپس جداسازی صورت گیرد. در استخراج، چون چگالی دو فاز نزدیک به یکدیگر می باشد، برای اختلاط و جداسازی نیروی محرکه کمی در دسترس است. در این حالت عمل مخلوط کردن دو فاز مشکل و جداسازی آن ها مشکل تر است. ویسکوزیته هر دو فاز نسبتاً بالا و سرعت حرکت مواد در بیشتر قسمت های دستگاه های استخراج پایین است. 

در نتیجه در بسیاری از دستگاه های استخراج، نیروی محرکه لازم برای اختلاط و جداسازی با روش های مکانیکی تامین می شود. محصول استخراج ممکن است سبک تر یا سنگین تر از محصول پسماند باشد در نتیجه محصول استخراج در بعضی از دستگاه ها از قسمت فوقانی و در بعضی دیگر از قسمت تحتانی دستگاه خارج می شود. مهم ترین دستگاه ها و برج هایی که در استخراج بکار برده می شوند عبارتند از :

۱- دستگاه های مخلوط کننده- ته نشین کننده (Mixer-Settlers):

این دستگاه جزء متداول ترین دستگاه های استخراج محسوب می شود و عملکرد بسیار ساده ای دارد. راندمان مرحله ای آن ۷۵ تا ۹۵% می باشد. این دستگاه از یک بخش برای اختلاط دو فاز و بخش دیگری برای جداسازی آن دو تشکیل شده است. میکسر باید اختلاط یکنواختی را ایجاد کند. این اختلاط می تواند با تکان دادن کل مخزن، رها کردن حباب درون محتویات مخزن و یا جریان دادن محتویات از پایین به بالای مخزن صورت گیرد. ستلر به شکل مخزنی می باشد که به دو فاز مخلوط شده، اجازه ته نشینی می دهد.معرفی انواع برج های جداسازینحوه عملکرد دستگاه Mixer-Settler

۲- ستون های ضربه ای (Pulsed Columns):

در این دستگاه پالسی به صورت هیدرولیکی به مایع داخل ستون اعمال می شود. چون این استخراج کننده ها هیچ قسمت متحرکی ندارند خیلی عملی هستند. صفحات سوراخ دار، طوری سوراخ شده اند که جریان عادی در آن ها رخ نمی دهد. عمل نوسان که روی مایعات انجام می شود، مایعات سبک و سنگین را از سوراخ ها عبور می دهد. ستون های پر شده نیز می توانند به صورت ضربه ای عمل کنند. در این دستگاه شدت انتقال جرم در برابر افزایش هزینه انرژی، افزایش می یابد.

معرفی انواع برج های جداسازی

اجزای ستون ضربه ای

۳-برج های استخراج پاششی و پرکن (Spray and Packed Extracting Towers):

در برج پاششی مایع سبکتر از پایین وارد و با عبور از قسمتی شبیه به آب پاش به صورت قطرات کوچک پخش می شود. قطرات مایع سبک از داخل توده مایع سنگین که به طور پیوسته به طرف پایین حرکت می کند عبور کرده و به طرف بالا می روند. این قطرات در حین بالا رفتن انتقال جرم را انجام داده و بالای برج به هم ملحق می شوند. در روش گفته شده فاز سبک پراکنده و فاز سنگین پیوسته است.

 عکس این حالت نیز ممکن است، بدین صورت که فاز سنگین در قسمت فوقانی ستون در فاز سبک پاشیده می شود و به صورت پراکنده از داخل جریان پیوسته مایع سبک، به طرف پایین حرکت کند. به منظور ایجاد سطح تماس بیشتر فاز دارای شدت جریان بیشتر را پراکنده میکنند. اگر اختلاف ویسکوزیته بالا باشد، فاز دارای ویسکوزیته بالاتر را برای افزایش سرعت ته نشینی پراکنده می کنند.

برج های پاششی به علت اختلاط محوری، راندمان کمی دارند. و به سختی می توان از آن یک واحد تئوری به دست آورد.

معرفی انواع برج های جداسازی

انواع برج های استخراج پاششی- تصویر سمت راست سینی دار و تصویر وسط پر شده می باشد

۴- برج های دارای سینی مشبک(Sieve Extracting Tower):

طرز کار این نوع از برج ها به صورت برج های پاششی است. با این تفاوت که در داخل این برج ها به فاصله های معین سینی های سوراخداری قرار داده شده است. در این سینی قطر سوراخ ها ۱٫۵ تا ۴٫۵mm و فاصله آن ها از یکدیگر ۱٫۵ تا ۶mm است. در این سینی ها معمولاً مایع سبک فاز پراکنده را تشکیل می دهد، به طوری که در زیر هر سینی لایه ای از مایع تشکیل می گردد که به درون مایع سنگین پاشیده می شود.

۵-برج های استخراج صفحه ای (Plate Towers):

این گونه از برج های استخراج صفحه هایی افقی دارند که مایع سنگین از بالای هر صفحه جریان یافته و از لبه به داخل فاز سنگین و به طرف بالا پاشیده می شود. در این نوع از برج ها فاصله بین صفحه ها در حدود ۱۰۰ تا ۱۵۰ میلی متر است. در تصویر زیر عملکرد برج استخراج صفحه ای را مشاهده کنید.

برج استخراج صفحه ای (Plate Towers)۶- برج های استخراج همزن دار (Baffle Towers):

در این نوع از برج های استخراج، انرژی مکانیکی لازم را همزن های داخلی نصب شده روی میله دوار مرکزی تأمین می سازد. دیسک های مسطح مایعات را پراکنده و به طرف دیواره برج می رانند. در آنجا حلقه های استاتور (Stator rings) مناطق ساکنی را ایجاد کرده و دو فاز از یکدیگر جدا می شوند.

معرفی انواع برج های جداسازیمعرفی انواع برج های جداسازیمعرفی انواع برج های جداسازی

تصاویر بالا نمونه هایی از برج های استخراج همزن دار می باشند

۷- استخراج کننده با دیسک چرخان  RDC و استخراج کننده CM:

استخراج کننده CM از پره های توربینی دیسکی با پره های ساخت برای پخش و مخلوط کردن مایعات استفاده می کند. همچنین از صفحات افقی برای کاهش اختلاط محوری استفاده می نماید. دستگاه RDC خیلی مشابه CM است با این تفاوت که بافل های عمودی در آن وجود ندارد و همزدن در اثر دیسک های چرخان انجام می شود که معمولاً سرعت بیشتری از پره های توربینی دارند.

معرفی انواع برج های جداسازی

نمونه ای از استخراج کننده RDC

طراحی برج تقطیر

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

روش مک کیب

روش مک کیب-تیل (به انگلیسی: McCabe–Thiele method) روشی در مهندسی شیمی است که برای طراحی برج‌های تقطیر پالایشگاهی و صنعتی استفاده می‌شود. در برج‌های تقطیر صنعتی، تعدادی صفحهٔ بزرگ در فاصله‌های معین قرار دارند که سینی نامیده می‌شوند. بر اثر انتقال جرم بین بخار که در ریبویلر ایجاد می‌شود و مایعی که از کندانسور ریزش می‌کند، جداسازی در طی طول برج و بر روی سینی‌ها انجام می‌شود

.در این روش، محاسبهٔ تعداد سینی‌های مورد نیاز در طراحی برج‌های تقطیر صنعتی و پالایشگاهی با روش ترسیمی بیان می‌شود. برای این منظور نیاز به داشتن نموداری است که غلظت بخار و مایع در دماها و فشارهای مختلف در طی فرایند تقطیر را نشان داده باشد. این نمودار به «نمودار تعادلی» معروف است. در فرایند تقطیر ممکن است دو یا بیش از دو جز از یکدیگر جداسازی شوند، ولی در این روش فقط به جداسازی دو جز با فراریت‌های مختلف از هم پرداخته می‌شود.

ویژگی مهم این روش

ویژگی مهم روش مک کیب-تیل سادگی آن برای بیان یک فرایند پیچیده صنعتی و فیزیکی است، به‌طوری‌که با استفاده از یک نمودار ساده می‌توان به شکل کلی تغییرات داخل یک برج تقطیر را بررسی کرد. این روش اگرچه دارای خطای زیادی است ولی از لحاظ آموزشی دارای اهمیت بالایی است، طوری‌که تقریباً در تمام دانشگاه‌های جهان در رشته مهندسی شیمی تدریس می‌شود

.دیگر روش‌های موجود برای محاسبه سینی‌ها در برج تقطیر عبارتند از روش پانچون-ساواریت و معادله فنسک. این روش‌ها نسبت به روش مک کیب-تیل اطلاعات دقیق‌تری به دست می‌دهند ولی در عوض پیچیدگی محاسبات در آن‌ها بالاتر است. روش مک کیب-تیل نسبت به این روش‌ها ساده‌تر می‌باشد ولی خطای آن بیشتر است.

مخترعان این ر وش

روش مک کیب-تیل در سال ۱۹۲۵ میلادی، توسط دو مهندس شیمی به نام‌های وارن لی مک کیب و ارنست تیل که هر دو از دانش آموختگان دانشگاه MIT بودند، ارائه شد. فرض‌های اساسی این روش عبارت اند از:

برج تقطیر و عملکرد آن

در روش مک کیب-تیل منظور از برج‌های تقطیر، برج‌هایی هستند که در ابعاد بزرگ و در مصارف صنعتی تولید می‌شوند. این برج‌ها عمدتاً در پالایشگاه‌ها و برای جداسازی هیدروکربن‌های نفتی استفاده می‌شوند. برج‌های تقطیر استوانه‌هایی فلزی و بلند هستند که در درون آن صفحه‌هایی به نام سینی قرار دارد.

ورودی واحدهای تقطیر که به خوراک معروف است، مواد ناخالصی هستند که از دو یا چند جزء تشکیل شده‌اند و با ورود به برج تقطیر عمل جداسازی روی آن‌ها صورت می‌گیرد. ارتفاع، قطر، تعداد سینی، شرایط خوراک و… مواردی هستند که در علومی چون عملیات واحد و در مهندسی شیمی برای برج‌های تقطیر مورد بررسی و محاسبه قرار می‌گیرند.

سینی‌ها نقش مهمی در عمل جداسازی در داخل برج ایفا می‌کنند. به این صورت که در پایین برج واحدی به نام ریبویلر قرار داشته و مایع‌های پایین برج را می‌جوشاند و واحد کندانسور که در بالای برج قرار دارد به عکس، بخارهای بالای برج را مایع می‌کند. خوراک ورودی به برج از اجزا سبک (با فراریت زیاد) و سنگین (با فراریت کم) تشکیل شده‌است.

مباحث انتقال جرم

در اثر انتقال جرم بین بخارها که از پایین وارد سینی می‌شوند و مایع‌ها که از بالا به داخل سینی می‌ریزد، به تدریج مایع پایین برج از ماده سنگین و بخارهای بالای برج از ماده سبک غنی می‌شود. به این ترتیب مواد تشکیل دهنده خوراک ورودی بر اساس تفاوت در فراریت و دمای جوش از هم جداسازی می‌شوند. اصولاً زمانی از تفاوت در فراریت صحبت می‌شود که تفاوت در نقاط جوش اجزا، بیشتر از ۲۵ درجه سانتیگراد باشد. تعداد سینی‌ها نقش مهمی در کارایی یک برج تقطیر دارد که در روش مک کیب-تیل به محاسبه آن پرداخته می‌شود.

استفاده از روش مک کیب-تیل برای جداسازی خوراک دو جزئی امکان‌پذیر است و بر اساس روش ترسیمی با استفاده از داده‌های تجربی تعادل مایع-بخار می‌باشد. در این روش با فرض این که مایع و بخار بر روی هر سینی در حال تعادل ترمودینامیکی قرار دارند، تعداد سینی‌های تئوری محاسبه می‌شود که این تعداد از تعداد واقعی سینی‌های به کار رفته کمتر است. با در نظر گرفتن بازده هر سینی می‌توان به تعداد سینی واقعی به کار رفته در برج رسید.

افزایش زمان تماس فاز بخار و مایع موجب افزایش بازده سینی‌ها می‌شود. در روش مک کیب-تیل هدف محاسبه تعداد سینی‌های تئوری ({\displaystyle N_{T}}) می‌باشد.

توضیح نمادها

در رابطه‌های زیر نمادها به شرح زیر هستند:به قسمتی از ستون تقطیر که بالای سینی خوراک است را بخش غنی سازیو پایین سینی خوراک را بخش عاری سازی می‌گویند.

بخش غنی‌سازی برج

در این بخش که شامل سینی‌های بالاتر از سینی خوراک و کندانسور می‌باشد، جز سبک‌تر در فاز بخار غنی می‌شود. در بالای برج بخارهای خروجی به کندانسور رفته و پس از میعان بخشی از آن به داخل برج مجدداً تزریق می‌شود. این بخش با عنوان جریان برگشتی یا ریفلاکس شناخته می‌شود. برای به دست آوردن خط تبادل بالای برج تقطیر به صورت زیر عمل می‌کنیم.

ابتدا رابطهٔ موازنه کلی را اطراف کندانسور می‌نویسیم:

{\displaystyle V_{1}=L_{0}+D}

در رابطهٔ بالا چون مایع برگشتی از کندانسور ({\displaystyle L_{0}}) به سینی اول ریخته می‌شود و پیش از آن نیز سینی وجود ندارد از اندیس {\displaystyle 0} استفاده شده‌است.

همچنین نسبت برگشت را نیز به صورت زیر تعریف می‌کنیم:

{\displaystyle R={\frac {L_{0}}{D}}\!}

حال رابطه موازنه کلی را بر حسب نسبت برگشت بازنویسی می‌کنیم:

{\displaystyle V_{1}=(1+R)D}

همچنین با توجه به فرض اولیهٔ مک کیب، مبنی بر برابری جرم همه بخارها باهم و مایع‌ها با هم در بخش غنی‌سازی و همچنین در بخش عاری‌سازی با همدیگر خواهیم داشت: {\displaystyle L=L_{0}} و {\displaystyle V=V_{1}} همچنین موازنهٔ جرم را برای جز فرار حول کندانسور می‌نویسیم:

{\displaystyle Vy_{n+1}=Lx_{n}+Dx_{D}\longrightarrow y_{n+1}={\frac {L}{V}}\!x_{n}+{\frac {D}{V}}\!x_{D}}

این رابطه به رابطهٔ خط تبادل بالای برج معروف است. همچنین می‌توان این رابطه را بر حسب نسبت برگشت به صورت زیر بازنویسی کرد:

بخش عاری‌سازی برج

در این بخش، مایع از جز سنگین‌تر غنی شده و به پایین برج ریزش می‌کند. این بخش از برج شامل سینی‌های پایین‌تر از سینی خوراک و ریبویلر می‌باشد. مایع پس از ریزش به پایین، برج وارد ریبویلر شده و پس از جوشیده شدن، بخشی از آن به عنوان محصول پایینی خارج و بخشی دیگر به داخل برج دوباره تزریق می‌شود. مجدداً برای این بخش نیز مطابق روش بالا و این بار حول ریبویلر موازنهٔ جرم را انجام می‌دهیم. موازنهٔ کلی جرم حول ریبویلر:

{\displaystyle {\bar {L}}\!={\bar {V}}\!+W}

موازنهٔ جرم جز فرار حول ریبویلر:

{\displaystyle {\bar {L}}\!x_{m}={\bar {V}}\!y_{m+1}+Wx_{m}\longrightarrow y_{m+1}={\frac {{\bar {L}}\!}{{\bar {V}}\!}}\!x_{m}-{\frac {W}{{\bar {V}}\!}}\!x_{W}}

و در انتها با ترکیب رابطهٔ موازنهٔ کلی و رابطهٔ بالا خط تبادل پایین به دست می‌آید:

خط خوراک

خوراک عبارت است از مادهٔ خام ورودی به یک واحد که در تقطیر عبارت است از ماده‌ای که به برج وارد شده و مورد جداسازی قرار می‌گیرد. خوراک ورودی می‌تواند پنج حالت کلی از نظر ترمودینامیکی داشته باشد که در جدول زیر نشان داده شده‌است:

شرایط خوراک {\displaystyle f} {\displaystyle q}
مایع سرد (مایع در دمای زیر نقطه حباب) f<0 q>۱
مایع اشباع ۰ ۱
مخلوط دو فازی (مخلوط مایع و بخار) عددی بین ۰ و ۱ عددی بین ۰ و ۱
بخار اشباع ۱ ۰
بخار مافوق داغ f>۱ q<0

در جدول فوق {\displaystyle f} عبارت است از کسری از خوراک ورودی که به صورت بخار اشباع است و در نقطه مقابل {\displaystyle q} عبارت است از کسری از خوراک ورودی که به صورت مایع اشباع است. همواره برای یک خوراک ورودی جمع {\displaystyle f} و {\displaystyle q} برابر یک است یعنی:

{\displaystyle f+q=1}

از برخورد دادن دو معادلهٔ خط تبادل بالا و پایین برج که مربوط به بخش غنی‌سازی و عاری‌سازی است، معادلهٔ دیگری به نام معادلهٔ خط خوراک به دست می‌آید. خط کاملاً عمودی مایع اشباع، خط کاملاً افقی بخار اشباع، خطوط بین حالات افقی و عمودی حالت دو فازی، خط مجاور خط عمودی حالت مایع سرد و خط مجاور خط افقی حالت بخار مافوق داغ را نشان می‌دهد.

با استفاده از این معادله و ترسیم آن، می‌توان مکان سینی مناسب برای ورود خوراک را به دست آورد.

رسم نمودار و محاسبه تعداد سینی‌ها

برای محاسبهٔ تعداد سینی‌ها و محل سینی خوراک، ابتدا می‌باید نمودار تعادلی بخار-مایع برای دو مادهٔ موجود در مخلوط خوراک را داشته باشیم. در این نمودار که در شکل نشان داده شده‌است، کسر مولی جز فرار در فاز بخار محور عمودی (y) و کسر مولی جز فرار در فاز مایع محور افقی (x) است.

خط تعادل که در این نمودار به صورت ایدئال در نظر گرفته شده‌است در بالای خط {\displaystyle y=x} و به صورت یک قوس رسم شده‌است. ناحیه بین خط تعادلی و خط {\displaystyle y=x} ناحیه دو فازی است. از آنجایی که جداسازی در ناحیهٔ دو فازی رخ می‌دهد، خطوط تبادل و خط خوراک در این ناحیه قرار دارند.

مراحل رسم نمودار

خطوط تبادل و خط خوراک، خطوطی ساده فرض می‌شوند که مطابق معادلات گفته شده با داشتن شیب و عرض از مبدأ آن‌ها می‌توان ترسیمشان کرد. برای خط تبادل بالا شیب نمودار برابر {\displaystyle {\frac {L}{V}}\!} و عرض از مبدأ برابر {\displaystyle {\frac {L}{V}}\!x_{D}} است. همچنین برای خط تبادل پایین نیز شیب برابر با {\displaystyle {\frac {{\bar {L}}\!}{{\bar {V}}\!}}\!} و عرض از مبدأ برابر است با {\displaystyle {\frac {W}{{\bar {V}}\!}}\!x_{W}}. در صورت رسم صحیح دو خط، نقطه تقاطع این دو خط بر روی خط خوراک خواهد بود. در نتیجه با داشتن تنها شیب خط خوراک می‌توان از نقطه تقاطع دو خط تبادل، خط خوراک را رسم کرد.

ادامه کار

در ادامه می‌باید محل {\displaystyle x_{D}} و {\displaystyle x_{W}} و {\displaystyle x_{f}} را بر روی نمودار تعادلی مشخص نمود. (همواره {\displaystyle x_{D}} بزرگتر از {\displaystyle x_{W}} است و {\displaystyle x_{f}} در مکانی بین این دو قرار دارد) سپس از نقطهٔ {\displaystyle x_{D}} که خط تبادل بالا نیز از آنجا شروع می‌شود، به صورت افقی و عمودی خطوطی رسم می‌کنیم تا به {\displaystyle x_{W}} برسیم.

این خطوط همواره باید بین خطوط تبادل و خط تعادلی مایع-بخار باشد. در صورت رسم صحیح نمودار، تعدادی شکل مثلثی یا پله مانند به وجود می‌آید. تعداد این پلکان‌ها همان تعداد سینی‌های تئوری برج تقطیر است. همچنان که در شکل روبرو مشاهده می‌شود، محل تلاقی دو خط تبادل یا همان خط خوراک در محدودهٔ مثلث سوم است، در نتیجه خوراک می‌باید از سینی سوم وارد شود.

تصحیح تعداد سینی‌ها

ریبویلرها و کندانسورها به دو صورت کلیو جزئیهستند. در کندانسورهای جزئی، تنها بخشی از بخار که به داخل برج بر می‌گردد (ریفلاکس) به مایع تبدیل می‌شود و مابقی به‌صورت بخار خارج می‌شود اما در نوع کلی، همهٔ بخار ورودی به کندانسور به مایع تبدیل می‌شود؛ در مورد ریبویلرها نیز به همین ترتیب است.

در صورتی که کندانسور از نوع جزئی باشد، سینی شماره یک (پله شماره ۱) در شمارش تعداد سینی‌ها آورده نمی‌شود و در صورتی که از نوع کلی باشد سینی اول نیز شمارش می‌شود. زیرا در کندانسورهای جزئی، کندانسور خودش به صورت یک سینی عمل می‌کند چون فاز مایع و بخار همانند سینی در حال تعادل هستند که می‌تواند باعث جداسازی شود. در مورد ریبویلرها نیز به همین ترتیب برای سینی آخر (پله آخر) تصمیم‌گیری می‌کنیم.

حالت‌های خاص در روش مک کیب-تیل

شرایطی که در بالا مورد بررسی قرار گرفت ساده‌ترین حالت یک برج تقطیر یعنی یک خوراک ورودی و محصول بالا و پایین است. اما ممکن است در برخی شرایط تغییراتی در شکل و نحوهٔ جداسازی در برج انجام گیرد که در ادامه به تعریف آن‌ها و بررسی معادلات آن می‌پردازیم.

بیشترین میزان برگشت، کمترین تعداد سینی
{\displaystyle y_{n+1}={\frac {L}{V}}\!x_{n}+{\frac {D}{V}}\!x_{D}\longrightarrow y_{n+1}=x_{n}}
خط تبادل پایین

همچنین برای خط تبادل پایین نیز جرم محصول خروجی پایین ({\displaystyle W}) برج برابر صفر بوده و مقدار ({\displaystyle {\bar {L}}}) و ({\displaystyle {\bar {V}}}) با هم برابرند:

همان‌طور که مشاهده می‌شود این دو خط بر خط {\displaystyle y=x} منطبق هستند. برای محاسبهٔ تعداد سینی‌ها مطابق روش گفته شده تعداد پلکان‌ها را شمارش می‌کنیم. نکته مهم در این قسمت شمارش پله اول و آخر است زیرا کندانسور و ریبویلر از نوع کامل هستند.

کمترین میزان برگشت، بیشترین تعداد سینی

در این شرایط کمترین جرم ممکن از بخار به داخل برج بازگردانده می‌شود. برای این منظور می‌باید از {\displaystyle x_{D}} به محل تلاقی خط خوراک با خط تعادل وصل کرد تا خط تبادل بالا به دست آید. شیب و عرض از مبدأ این معادله برابر با شیب و عرض از مبدأ خط تبادل با کمترین نسبت برگشت ممکن است. با استفاده از رابطهٔ زیر می‌توان کمترین مقدار نسبت برگشت را محاسبه کرد:

{\displaystyle y_{n+1}={\frac {R}{R+1}}\!x_{n}+{\frac {x_{D}}{R+1}}\!}

شیب و عرض از مبدأ این معادله، برابر با شیب و عرض از مبدأ خط ترسیم شده‌است. برای خط تبادل پایین نیز از {\displaystyle x_{W}} به محل تلاقی خط خوراک و خط تعادلی رسم می‌شود و مطابق خط تبادل بالا شیب و عرض از مبدأ این خط برابر با شیب و عرض از مبدأ خط تبادل پایین با کمترین نسبت برگشت ممکن است.

همچنین در این حالت تعداد سینی‌ها به بی‌نهایت می‌رسد. در نتیجه به‌طور کلی می‌توان گفت که هر قدر خطوط تبادل به سمت خط تعادل میل کند، تعداد سینی‌ها نیز بیشتر می‌شود.

استفاده از بخار مستقیم

در برخی موارد به علت وجود یک بویلر مرکزی در واحد صنعتی، از یک ریبویلر مخصوص برای برج تقطیر استفاده نمی‌شود و مایع پایینی برج پس از خروج به بویلر فرستاده شده و بخار خروجی از بویلر مجدداً به پایین برج تزریق می‌شود.

در این حالت و با در نظر گرفتن جریان‌های ورودی و خروجی به پایین برج، معادلهٔ خط تبادل پایین به صورت زیر بازنویسی می‌شود:

{\displaystyle y_{m+1}={\frac {W}{S}}\!x_{m}-{\frac {W}{S}}\!x_{w}}

اگر خط تبادل با خط ({\displaystyle y=x}) برخورد داده شود در نقطه {\displaystyle x={\frac {-{\frac {W}{S}}\!}{1-{\frac {W}{S}}\!}}\!x_{W}} همدیگر را قطع می‌کنند

همچنین خط تبادل پایین در نقطهٔ ({\displaystyle x_{W}}) با محور {\displaystyle x} برخورد می‌کند. در نتیجه با در نظر گرفتن این دو نقطه (علاوه بر روش شیب و عرض از مبدأ) خط تبادل پایین قابل رسم است.

در این حالت خط تبادل بالا تغییر نمی‌کند و مانند قبل از نقطهٔ ({\displaystyle x_{D}}) تا خط خوراک رسم شده و با خط تبادل پایین برخورد می‌کند.

برج با چند خوراک ورودی

ممکن است در یک برج تقطیر بیش از یک خوراک وارد شود. در این شرایط به تعداد خوراک اضافه شده، خط تبادل جدید افزوده می‌شود و با رسم نمودار می‌توان محل سینی هر خوراک را تعیین کرد. خطوط تبادل بالا و پایین تغییر نمی‌کند ولی خطی جدید با معادلهٔ زیر برای ناحیهٔ بین دو خوراک ورودی خواهیم داشت:

{\displaystyle y_{z+1}={\frac {L’}{V’}}\!x_{z}+{\frac {Dx_{D}-F_{1}x_{f_{1}}}{V’}}\!}

بدیهی است که با افزوده شدن خوراک‌های جدید تنها تعداد عبارت‌های {\displaystyle Fx_{f}} در {\displaystyle {\frac {Dx_{D}-F_{1}x_{f_{1}}}{V’}}\!} اضافه می‌شود.

روش ترسیمی برای این حالت نیز مانند قبل است، با این تفاوت که فقط یک خط تبادل دیگر نیز افزوده می‌شود.در اینجا {\displaystyle V’} نشان دهندهٔ بخار در حال صعود و {\displaystyle L’} نشان دهندهٔ مایع در حال ریزش در قسمت بین دو خوراک ورودی است. همچنین اندیس {\displaystyle z} به این دلیل به کار می‌رود تا با معادلات خط تبادل بالا و پایین اشتباه نشود. به‌طور کلی با اضافه شدن خوراک جدید یا محصول جانبی، تعداد تقسیم‌بندی‌های برج زیاد شده و نام گذاری‌ها تغییر می‌کند.

برج با محصول جانبی

گاهی مواقع به محصول جانبی با کیفیت پایین‌تر از محصول بالایی برج نیاز داریم. در این شرایط با گرفتن یک خروجی از قسمت‌های پایین‌تر برج، این محصول به‌دست می‌آید. با استفاده از روش مک کیب-تیل می‌توان با داشتن اطلاعات محصول جانبی مورد نیاز، محل سینی مناسب برای خروج محصول جانبی را تعیین کرد. در این حالت نیز به تعداد محصول جانبی خارج شده از برج، خط تبادل اضافه می‌شود.

نکات مهم

نکتهٔ مهم در این قسمت این است که برخلاف حالت چند خوراک، شیب خط تبادل وسط نسبت به خط تبادل بالا کاهش می‌یابد. به‌طور کلی می‌توان گفت که ورود خوراک جدید موجب افزایش شیب خطوط تبادل میانی شده و خروج محصول جانبی نیز موجب کاهش شیب خطوط تبادل میانی می‌شود.

خط تبادل میانی در این حالت از معادلهٔ زیر پیروی می‌کند:

{\displaystyle y_{z+1}={\frac {L’}{V’}}\!x_{z}+{\frac {Dx_{D}+S_{1}x_{S_{1}}}{V’}}\!}

که در این رابطه {\displaystyle S_{1}} جرم محصول جانبی خروجی و {\displaystyle x_{S_{1}}} کسر مولی جز فرار در محصول جانبی خروجی است.

بدیهی است که با افزوده شدن محصولات جانبی جدید تنها تعداد عبارت‌های {\displaystyle Sx_{s}} در {\displaystyle {\frac {Dx_{D}-S_{1}x_{S_{1}}}{V’}}\!} اضافه می‌شود.

روش مک کیب-تیل برای تقطیر آزئوتروپی

محلول‌های هم جوش یا آزوئروپ محلول‌هایی هستند که فراریت دو جز در آن‌ها متغیر است به‌طوری‌که در نمودار {\displaystyle x-y} آن‌ها تا بخشی از نمودار فراریت جز مثلاً A بیشتر است و از آن به بعد فراریت جز B بیشتر خواهد بود. در نتیجه در نمودار بر خلاف حالت ایدئال (مطابق قانون رائولت)، بخشی از نمودار بالای خط {\displaystyle y=x} و بخش دیگر زیر آن قرار خواهد گرفت.

جداسازی

برای جداسازی محلول‌های آزئوتروپ روش‌های زیادی پیشنهاد شده‌است اما بهترین آن استفاده از چند برج تقطیر به صورت سری است که طی این فرایند با هر بار جابجایی نمودار از بالای خط {\displaystyle y=x} به پایین و بر عکس یک برج جدید به مجموعه اضافه می‌شود. روش مک کیب-تیل برای این حالت نیز از اصول گفته شده پیروی می‌کند با این تفاوت که می‌باید برای هر برج به‌طور جداگانه اجرا شود.

در نتیجه مثلاً برای محلولی با یک نقطه آزئوتروپ که از دو ناحیه بالا و پایین خط {\displaystyle y=x} تشکیل شده‌است، چهار خط تبادل خواهیم داشت که دو تای آن در ناحیه بالای خط {\displaystyle y=x} و دو تای دیگر زیر خط {\displaystyle y=x} رسم خواهد شد. همچنین هر بخش نشان دهنده تعداد سینی‌های مربوط به یک برج است چرا که دو یا چند برج در این حالت به کار رفته‌است.

انواع برج های تقطیر پالایشگاهی

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

انواع برج های تقطیر پالایشگاهی

برج هاي تقطیر با سینی کلاهدار (کلاهکی)
در این نوع برج ها ، تعداد سینی ها در مسیر برج به نوع انتقال ماده و شدت تفکیک بستگی دارد. قطر برج و فاصله میان سینی ها به مقدار مایع و گازي که در واحد زمان از یک سینی می گذرد وابسته است .از آنجاییکه روي هر یک از سینی ها تغییر فاز رخ می دهد هر یک از این سینی ها یک مرحله تفکیک تلقی می شوند. براي اینکه بازدهی انتقال ماده در هر سینی به بیشترین حد برسد باید زمان تماس میان دو فاز و سطح مشترك آنها به بیشترین حد ممکن برسد.

بخش هاي مختلف برج تقطیر با سینی کلاهدار:

بدنه و سینی ها :جنس بدنه معمولاً از فولاد ریخته است و جنس سینی ها از چدن. فاصلۀ سینی ها را معمولاً با توجه به شرایط طراحی، درجه خلوص و بازدهی کار جدا سازي انتخاب می کنند. با بیشتر شدن قطر برج، فاصلۀ بیشتري براي سینی ها در نظر گرفته می شود.
سرپوش ها یا کلاهک ها: جنس آنها از چدن می باشد و نوع آنها با توجه به نوع تقطیر انتخاب می شود و تعدادشان در هر سینی به بیشترین حد مجاز عبور گاز از سینی بستگی دارد.
موانع یا سدها :براي کنترل بلندي سطح مایع روي سینی به هر سینی سدي به نام”وییر” Wier قرارمی دهند تا از پایین رفتن سطح مایع از حد معینی جلو گیري کند. بلندي سطح مایع درون سینی باید چنان باشد که گازهاي بیرون آمده ازشکافهاي سرپوش ها بتوانند از درون آن گذشته و زمان گذشتن هر حباب به بیشترین حدممکن برسد. اثر افزایش زمان گذشتن حباب ازمایع، زمان تماس گاز و مایع زیاد شده، بازده سینی ها بالا می رود.
 

برج هاي تقطیر با سینی مشبک (غربالی)

در این نوع برج ها ، اندازه مجراها یا شبکه ها باید چنان تعیین شود که فشار گاز بتواند گاز را از مایع با سرعتی مناسب عبور دهد. عامل مهمی که دربازده این سینی ها مؤثر است، شیوه کارگذاري آنها در برج است اگراین سینی ها کاملاً افقی قرار نداشته باشند، بلندي مایع درسطح سینی یکنواخت نبوده و گذر گاز از همۀ مجرا ها یکسان نخواهد بود.
یک نکته قابل تأمل دراین نوع برج، خورندگی فلز سینی هاست چون براثر خورندگی ، قطر سوراخ ها زیاد می شود که در نتیجه مقدار زیادي بخار با سرعت کم از درون آن مجاري خورده شده گذر خواهد کرد. می دانیم که اگر سرعت گذشتن گاز از حد معینی کمتر گردد مایع از مجرا به سوي پایین حرکت کرده بازدهی کار تفکیک کاهش خواهد یافت.

برج هاي تقطیر با سینی هاي دریچه اي:

این نوع سینی ها مانند سینی هاي مشبک هستند با این اختلاف که دریچه اي متحرك روي این مجرا را گرفته است. در صنعت نفت دو نوع از این سینی ها بکار میروند:
انعطاف پذیر :همانطور که از نام آن بر می آید دریچه ها می توانند بین دو حالت خیلی باز یا خیلی بسته حرکت کنند.
صفحات اضافی :دراین نوع سینی ها دو دریچه یکی سبک که درکف سینی قرار می گیرد و دیگري سنگین که برروي سه پایه اي قرارگرفته، تعبیه شده است. هنگامیکه بخار کم باشد، تنها سرپوش سبک به حرکت درمی آید و اگر مقدار بخار از حد معینی بیشتر باشد ، هردو دریچه حرکت می کنند.

برج هاي تقطیر انباشته (پر شده)

دربرج هاي انباشته، به جاي سینی ازتکه ها یا حلقه هاي انباشتی استفاده می شود. در برج هاي انباشته حلقه ها یا تکه هاي انباشته باید به گونه اي انتخاب شوند که دو هدف زیر را عملی کنند:
1- ایجاد بیشترین سطح تماس میان مایع و بخار
2- ایجاد فضاي مناسب براي گذاشتن سیال از بستر انباشته.
مواد انباشتی باید داراي تمایل ترکیب با سیال درون برج نباشند و نیز باید به اندازه کافی مستحکم باشند تا بر اثر استفاده شکسته نشود و تغییرشکل ندهند. این را هم بدانیم که مواد انباشتی را به دو روش درون برج قرار میدهند:
پرکردن منظم :ازمزایاي این نوع پرکردن، کمتربودن افت فشار است که درنتیجه می توان حجم بیشر مایع را از آن گذراند.
پرکردن نامنظم :از مزایاي این نوع پر کردن ،میتوان به کم هزینه بودن آن اشاره کرد ولی افت فشار بخار درگذر برج زیاد خواهد بود.

مقایسه برج هاي انباشته با برج هاي سینی دار:

دربرج هاي انباشته عموماً افت فشار نسبت به برج هاي سینی دار کمتر است ولی اگردر مایع ورود برج ،ذرات معلق باشد ،برج هاي سینی دار بهتر عمل می کنند. زیرا در برج هاي انباشته ،مواد معلق ته نشین شده و سبب گرفتگی و برهم خوردن جریان مایع می گردد. اگر برج متوسط باشد، برج سینی دار بهتر است زیرا اگر در برج هاي انباشته قطر برج زیاد باشد تقسیم مایع در هنگام حرکت از بستر انباشته شده یکنواخت نخواهد بود.

در برجهاي سینی دار میتوان مقداري از محلول را به شکل فرآیندهاي کناري از برج بیرون کشید، ولی در برجهاي انباشته این کار شدنی نیست.کارهاي تعمیراتی در درون برج هاي سینی دار آسانتر انجام می گیرد. تمیز کردن برج هاي انباشته ، از آنجا که باید قبل از هر چیز آنها را خالی کرده و بعد آنها را تمیز نماییم ، بسیار پرهزینه خواهد بود.