دوره آموزش انلاین آنالیز فوتبال

آموزش دوره آنالیز فوتبال
آموزش دوره آنالیز فوتبال

پردیس فناوری کیش طرح مشاوره متخصصین صنعت و مدیریت،زیر گروه ورزش

دوره آموزش انلاین آنالیز فوتبال

 دوره آموزش انلاین آنالیز فوتبال فرض بر این گرفته شده که تکنیکهای فوتبال و همه اطلاعاتی که در

دسترس عموم نیست را منعکس می‌کند و به همین خاطر، یک تحلیلگر تکنیکال فقط روی تحلیل نموداری

و آماری ورزشی تمرکز می‌نماید. شاید تحلیل تکنیکال در ظاهر بسیار پیچیده به نظر برسد، اما در

واقع این نوع تحلیل برای بررسی تکنیک و چیدمان بازیکنان استفاده میشود تا بتوان از طریق آن مسیر

استراتژی تیم فوتبال را تشخیص داد. به عبارت دیگر، تحلیل تکنیکال به جای اینکه ویژگی‌های

ورزشگاه را مورد بررسی قرار دهد، در تلاش است تا تکنیکهای جدید و پشت پرده حرکات فوتبال را درک کند.

همچنین  دوره آموزش ، با رویکرد کاملا علمی برای توانمند سازی مربیگران و تحلیلگران ورزشی ، مدیریت باشگاه های ورزشی و علاقه مندان به بخش ورزش فوتبال برگزار می گردد ، مدرس این دوره ویژه جناب آقای فرزاد حبیب اللهی آنالیزور و دستیار

مربی سابق تیم پرسپولیس و آنالیزور در تیم ملی عمان جناب آقای برانکو ایوانکوویچ می باشد .

ثبت نام در
www.portal.kishtech.ir

ظرفیت محدود

تاریخ برگزاری : 13 اسفندماه ۱۳۹۹

نحوه برگزاری : آنلاین همزمان

مدرس دوره : استاد فرزاد حبیب اللهی

دوره آموزش انلاین آنالیز فوتبال


ارتباط با ما : 
تلفن : ۰۲۱۶۶۱۷۶۱۹۶       ۰۲۱۶۶۴۹۳۵۲۷      ۰۹۰۵۹۶۲۶۹۰۰
نشانی : بلوارکشاورز خیابان ۱۶ آذر انتشارات دانشگاه تهران پلاک ۵۴ طبقه۵ واحد ۹
ثبت نام از طریق سایت زیر
www.portal.kishtech.ir

آنالیز SEM

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

آنالیز SEM : میکروسکوپ الکترونی روبشی 

آنالیز SEM یکی از خدمات آنالیز بسیار پر کاربرد در خانواده روش های میکروسکوپی می باشد. مهمترین کاربرد آنالیز SEM بررسی و مطالعه مورفولوژی و سطح مواد می باشد. دلیل اصلی ابداع میکروسکوپ SEM قدرت تفکیک کم میکروسکوپ های نوری به دلیل طول موج بالای نور مرئی مورد استفاده در آنها بود. قدرت تفکیک کم باعث می شود جزییات ریز و نانومتری قابل مشاهده نباشد.

درآنالیز SEM به جای نور از الکترون ها برای تشکیل تصویر استفاده می شود. مزیت دیگری که SEM دارد این است که برخلاف نور که طول موج ثابتی دارد، طول موج الکترون ها با تغییر شتاب و سرعت آنها قابل تغییر است به این مفهوم که اپراتور بر حسب نوع نمونه و ویژگی های آن می تواند با تغییر شتاب الکترون، قدرت تفکیک های متفاوتی را برای دستیابی به جزییات بیشتر ایجاد کند. الکترون ها در تفنگ الکترونی گسیل حرارتی (Thermal emission) تولید می شوند.

در این نوع تفنگ الکترونی از یک سیم داغ تنگستنی به عنوان منبع تولید الکترون استفاده می‌شود. زمانی که فلزات تا دمای بالایی داغ می‌شوند از خود الکترون ساطع می‌کنند. در تفنگ الکترونی مورد استفاده در این میکروسکوپ الکترونی، الکترون‌های خارج شده از فیلامان (سیم نازک) تنگستنی با استفاده از میدان الکترونی جمع آوری می‌شود و با میدان الکتریکی دیگری به آن شتاب داده می‌شود تا سرعت الکترون‌ها افزایش یابد.

از آنجاییکه سرعت الکترون ها طبق رابطه دوبروی نسبت عکس با طول موج آنها دارد، شتاب دهی به الکترون ها منجر به کاهش طول موج و همانطور که قبلا توضیح کاهش طول موج باعث بهبود قدرت تقکیک میکروسکوپ و مشاهده جزییات بیشتر در نمونه می شود. در آزمون SEM بیم الکترونی پس از تشکیل در تفنگ الکترونی، از لنزهای مختلف عبور می کنند و در نهایت به نمونه برخورد می کنند.

در اثر این برخورد و انرژی که منتفل می شود، سیگنال هایی به شکل الکترون و امواج الکترومغناطیس از داخل ماده گسیل می شود که مبنای تشکیل تصویر و اطلاعات مختلفی است که در آنالیز SEM قابل استخراج می باشد. بر خلاف میکروسکوپ نوری که جنس عدسی ها شیشه ای است و وظیفه آنها بزرگنمایی می باشد، جنس عدسی ها در میکروسکوپ SEM، سیم پیچ های الکترومغناطیسی است و وظیفه آن نتظیم باریکه الکترونی روی سطح نمونه می باشد. معمولا دو سری عدسی های متمرکز کننده و شیئی در میکروسکوپ های الکترونی استفاده می شود. میکروسکوپ های الکترونی عموما در خلا کار می کنند و وظیفه تشکیل خلا به عهده پمپ های خلا روتاری و نفوذی هست که به سیستم میکروسکوپ متصل هستند.

علاوه بر تصویربرداری، قابلیت دیگر SEM، آنالیز عنصری می باشد. با استفاده از این قابلیت می توان عناصر موجود در نمونه را به صورت نقطه ای، خطی و ناحیه ای شناسایی کرد. مبنای شناسایی عناصر امواج ایکس مشخصه ای است که از داخل ماده گسیل می شود. امواج ایکس مشخصه به دلیل برخورد الکترون ها با نمونه و ایجاد حفره در نمونه، ایجاد می شوند. جای خالی الکترونها، با الکترون هایی از ترازهای بالاتر پر می شوند و تفاوت انرژی ترازهای مختلف، بصورت امواج ایکس مشخصه گسیل می شود.

از آنجایی که فاصله بین ترازهای انرژی در عناصر مختلف منحصر به فرد می باشد، با اندازه گیری انرژی امواج می توان عناصر را شناسایی کرد. به طور کلی آنالیز SEM نسبت به میکروسکوپ الکترونی روبشی گسیل میدانی، قدرت تفکیک کمتری دارد. دلیل این امر گسترده تر بودن سطحی که الکترون از آن خارج می‌شودنسبت به میکروسکوپ‌های الکترونی است که از مکانیزم گسیل میدانی استفاده می‌کنند، است. اما بطور کلی قدرت بزرگ‌نمایی و قدرت تفکیک یک میکروسکوپ الکترونی به عوامل مختلفی مانند مهارت اپراتور، کیفیت لنز‌ها، نوع نمونه و نرم افزار دستگاه وابسته است. معمولا آزمون SEM برای نمونه ها و ذراتی که از ابعاد حدود ۴۰ نانومتر بزرگتر هستند، بسیار مناسب است.

نمونه هایی که برای تصویر برداری در آنالیز SEM استفاده می شوند می بایست رسانای جریان الکتریکی باشند. برای نمونه هایی که رسانا نیستند، معمولا یک لایه از مواد رسانا (معمولا طلا) با استفاده از دستگاه اسپاترینگ (کند و پاش یونی) پوشش داده می شوند. در صورتی که نمونه رسانا نباشد، بیم الکترونی فرودی روی نمونه تجمع پیدا می کند. از آنجایی که بارهای هم نام به یکدیگر نیروی دافعه وارد می کنند، تجمع الکترون ها روی سطح نمونه باعث انحراف بیم الکترونی فرودی در اثر نیروی الگترومغناطیسی دافعه بین الکترون ها می شود. مرحله دیگر در آماده سازی نمونه های SEM، صاف و صیقلی کردن سطح آن به منظور تصویربرداری با کیفیت بهتر می باشد. این کار با استفاده از سمباده های مختلف انجام می شود.

در ادامه مشخصات دستگاه SEM مورد استفاده در سامانه مهامکس ذکر شده است.  این میکروسکوپ هرچند از تفنگ گسیل حرارتی استفاده می‌کند ولی بخاطر کیفیت ساخت خوب و مهارت اپراتور، توانایی تصویر برداری خوبی دارد. ضمن اینکه مجهز به میز کار (صفحه‌ای که نمونه‌های روی آن قرار می‌گیرند) با ۵ درجه آزادی (در سه راستا قابلیت حرکت و در دو راستا قابلیت چرخش دارد) است. ضمن اینکه این دستگاه مجهر به آشکارساز EDS می باشد که قابلیت آنالیز عنصری را علاوه بر تصویربرداری فراهم می کند.

مشخصات فنی آنالیز SEM

  • مدل دستگاه: SEM FEI Quanta 200
  • محدوده ی بزرگنمایی: ۱۰ تا ۱۰۰۰۰۰ برابر
  • مجهز به  EDX, WDX.
  • محدوده ی وسیعی از محفظه ها و ‍‍‍پایه های نمونه
  • تفنگ الکترون: کاتد گرم شده ی تنگستن
  • تصویربرداری/نقشه برداری: بله
  • حالتهای تغییر وضعیت نمونه: ۵ حالت شامل: جهت (X (50mm، جهت(Y (70mm، جهت (Z(40mm، کج شدن نمونه (Tilt) (˚۵-˚۹۰) و چرخش (˚۳۶۰)
  • عمق نفوذ الکترونها بسته به ولتاژ انتخابی متغیر است و برای حالتهای مختلف عبارت است از : الکترونهای ثانویه (۱-۱۰nm)، الکترونهای برگشتی ((۰.۱-۱µm و اشعه X (1-10 µm)
  • مجهز به دوربین عکاسی دیجیتال
  • طیف سنج اشعه X
  • مجهز به میکروسکوپ نوری با قدرت تفکیک  ۱µm، بزرگنمایی حداکثر ۳۰۰ برابر و محدوده ی دیدی به قطر ۰.۶۵mm

توانایی ها آنالیز SEM

  • رزولوشن: ۳nm at 30 kV
  • بررسی ساختارهای میکروسکوپی در بزرگنمایی بالا به روشهای B.S و SE
  • تعیین جنس و ضخامت انواع پوششها
  • تهبه آنالیز تصویری از سطح نمونه(X-Ray Image)
  • تهیه آنالیز خطی(Line Scan) (عدم استفاده)
  • تنها عنصر سنگین تر از آلومینیوم قابل شناسایی می باشند عناصر غیر قابل شناسایی عبارتند از: H-He-Li-Be-B-C-N-O-F-Ne-Na-Mg-Al

 

آنالیز جذب و دفع با برنامه دمایی

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

آنالیز احیا با برنامه دمایی (TPR)

این آنالیز یکی از پر کابرد ترین آنالیز ها برای بررسی کاتالیست ها می باشد که بر مبنای عبور گاز احیا کننده ( هیدروژن یا منواکسید کربن ) از روی نمونه و واکنش آن با اکسیژن های ساختاری آن در حین عملیات حرارت دهی به نمونه می باشد. در نهایت میزان هیدروژن (یا CO) مصرف شده به صورت نموداری بر حسب دما قابل ارائه می باشد.

قابلیت های این آنالیز:

  • ارائه نمودار کیفی میزان مصرف هیدروژن (یا CO) بر حسب دما
  • بررسی مراحل احیا پذیری نمونه ها
  • ارائه میزان کمی مصرف هیدروژن (یا CO)
  • تفکیک پیک ها و ارائه سطح زیر نمودار برای هر پیک

پارامتر های انجام آنالیز:

  • انجام عملیات گاز زدایی برای خالص سازی نمونه ها
  • نرخ حرارت دهی: 1 تا 100 درجه بر دقیقه
  • گاز احیا کننده: H2 یا CO
  • حداکثر دمای عملیاتی: 1000 درجه سانتیگراد
  • فشار عملیاتی: 1 اتمسفر

نمونه ایی از آنالیز انجام شده توسط دستگاه را در زیر مشاهده می نمایید.

TPR

برای ارائه درخواست انجام این آنالیز بر روی اینجا کلیک نمایید.

آنالیز دفع با برنامه دمایی (TPD)

این آنالیز نیز از پر کابرد ترین آنالیز ها برای بررسی کاتالیست ها می باشد که بر مبنای جذب گاز مورد نظر ( برای مثال آمونیاک) بر روی نمونه در دمای خاص و سپس دفع آن در محیط گاز هلیم در حین عملیات حرارت دهی به نمونه می باشد. در نهایت میزان گاز دفع شده از روی نمونه به صورت نموداری بر حسب دما قابل ارائه می باشد. رایج ترین گازها برای انجام این تست آمونیاک، مونواکسید کربن، دی اکسیدکربن و هیدروژن می باشد.

قابلیت های این آنالیز:

  • ارائه نمودار کیفی میزان مصرف گاز بر حسب دما
  • بررسی کمی و کیفی سایت های اسیدی و بازی نمونه ها توسط گاز آمونیاک و مونواکیسد کربن
  • تفکیک پیک ها و ارائه سطح زیر نمودار برای هر پیک

پارامتر های انجام آنالیز:

  • انجام عملیات گاز زدایی برای خالص سازی نمونه ها
  • نرخ حرارت دهی: 1 تا 100 درجه بر دقیقه
  • گاز مورد استفاده: NH3, CO, CO2, H2
  • حداکثر دمای عملیاتی: 1000 درجه سانتیگراد
  • فشار عملیاتی: 1 اتمسفر

نمونه ایی از آنالیز انجام شده توسط دستگاه را در زیر مشاهده می نمایید.

TPD

برای ارائه درخواست انجام این آنالیز بر روی اینجا کلیک نمایید.

آنالیز اکسیداسیون با برنامه دمایی (TPO)

این آنالیز برای بررسی میزان سوختن نمونه در محیط اکسیژن می باشد. در نهایت میزان مصرف اکسیژن توسط نمونه به صورت نموداری بر حسب دما قابل ارائه می باشد. گازهای اکسیژن و هوا برای انجام این تست مورد استقاده قرار می گیرند.

قابلیت های این آنالیز:

  • ارائه نمودار کیفی میزان مصرف اکیسژن بر حسب دما
  • ارائه میزان کمی برای مصرف اکسیژن
  • ارائه سطح زیر نمودار برای هر پیک

پارامتر های انجام آنالیز:

  • انجام عملیات گاز زدایی برای خالص سازی نمونه ها
  • نرخ حرارت دهی: 1 تا 100 درجه بر دقیقه
  • گاز مورد استفاده: O2, Air
  • حداکثر دمای عملیاتی: 1000 درجه سانتیگراد
  • فشار عملیاتی: 1 اتمسفر

دستگاه XRD یا پراش اشعه ایکس چیست؟

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت و مدیریت-(گروه مهندسی شیمی)

دستگاه XRD یا پراش اشعه ایکس چیست؟

دستگاه XRD یا دستگاه پراش اشعه ایکس X-Ray Diffraction یکی از تجهیزات منحصر بفرد برای آنالیز و تعیین مشخصات کریستال ها در آزمایشگاه می باشد. اصول طراحی دستگاه XRD بر پایه تابش پرتو X به نمونه در زوایای مختلف و تحلیل الگوی پراش یا بازتابش آن می باشد. از جمله مواردی که می توان در آنالیز با دستگاه XRD تعیین کرد تشخیص فاز کریستال، اندازه و شکل دانه کریستال، فاصله بین لایه های کریستال، تعیین جهت گیری و موقعیت بلور، اندازه گیری درصد کریستالیته نمونه، ترکیب اتم ها های کریستال و ساختار آن می باشد. الگوی پراش اشعه X برای هر ماده، یکتا و منحصر به فردی می باشد. تاکنون الگوی پراش تعداد زیادی از مواد کریستالی توسط تجهیز ایکس آر دی جمع آوری شده است. در حالت کلی با مقایسه الگوی پراش اشعه ایکس بدست آمده با الگوی پراش استاندارد ترکیب کریستالی شناسایی می شود.

بخش های اصلی دستگاه XRD

  • منبع x-ray
  • نگهدارنده نمونه
  • دتکتور

اساس کار با دستگاه XRD

دستگاه XRD به طور گسترده در شناسایی نمونه های مجهول جامد کریستالی مورد استفاده قرار می گیرد. نمونه آنالیز XRD معمولاً به صورت پودری و در حدود 3-5 گرم می باشد. دستگاه XRD دارای یک دایره فلزی می باشد که منبع پرتو X و دتکتور روی جداره داخلی آن و نمونه در مرکز آن قرار می گیرد. عملکرد دستگاه XRD بدین صورت است که پرتو X در زوایای مختلف(θ) به بلور کریستال تابیده می شود. در اثر این تابش و برخورد پرتو به اتم ها، اشعه بازتابیده می شود و یا اصطلاحاً پراش می یابد. بازتابش پرتو در XRD از اصل پراکندگی رایلی یا Rayleigh scattering پیروی می کند. یعنی فرکانس پرتو تابیده و پراش یافته یکی می باشد و فتونی در حین برخورد به اتم جذب نمی شود (در XRD تابش فلورسانس نیز وجود دارد و بخشی از فتون ها توسط اتم ها جذب می شود که پرتو بازتابش توسط فیلتر های اپتیکی حذف می شوند، در واقع تابش فلورسانس اساس کار با دستگاه XRF می باشند).

بلور کریستال به این صورت است که دارای صفحاتی به فاصله d و روی هم می باشد. بازتابش پرتو از اتم های بلور در لایه های مختلف می تواند با هم تداخل داشته باشند. این تداخل می تواند تداخل سازنده و یا تداخل ویرانگر باشد. هنگامی که اشعه پراش یافته و بازتابیده از نمونه کریستالی توسط دتکتور دریافت می گردد به سیگنال تبدیل شده و در نهایت به صورت یک نمودار گزارش می شود. نمودار خروجی فرآیند، الگوی پراش نامیده می شود و نمایشگر شدت پرتو بازتابیده بر حسب زاویه 2θ می باشد. 2θ در واقع زاویه بین امتداد پرتو تابش و پرتو بازتابش می باشد که معمولاً از 0-160 درجه گزارش می شود. هنگامی که پرتوهای بازتابش با هم تداخل سازنده داشته باشند، نمودار درآن زاویه 2θ دارای قله ماکزیمم می باشد و در سایر زوایا به دلیل تداخل ویرانگر شدت ناچیزی دارد. اطلاعات مهمی که از نمودار پراش ایکس جهت تحلیل نتایج استخراج می شود، شامل زاویه قله بیشینه، شدت نسبی هر قله و پهنای قله ها می باشد.

نمای داخلی دستگاه پراش اشعه ایکس XRD

نمای داخلی از دستگاه پراش اشعه ایکس XRD

تحلیل الگوی نمودار XRD

اگر بخواهیم یک تحلیل کلی از نمودار خروجی دستگاه XRD داشته باشیم باید به این نکته اشاره کنیم که زاویه قله ماکزیمم نشان دهنده فاصله بین صفحات کریستالی و شدت هر قله حاوی اطلاعاتی از نحوه آرایش اتم ها می باشد. علت تداخل سازنده و ماکزیمم شدن قله توسط قانون براگ توضیح داده می شود. طبق این قانون هنگامی که پرتو به اتم در لایه های مختلف برخورد می کند پرتو بازتابش لایه های زیرین دارای یک اختلاف راه با لایه قبل از خود دارد این اختلاف راه به صورت زیر تعریف می شود.
ΔX=2dsinθ
در این معادله d فاصله بین صفحات کریستالی می باشد. این اختلاف راه مضربی از طول موج (λ) اشعه می باشد و به صورت زیر تعریف می شود:
nλ=2dsinθ
در این معادله معمولاً n=1 می باشد.
اختلاف فاز بین پرتوهای بازتابش لایه ها بر حسب اختلاف راه به صورت زیر تعریف می شود:
ΔΦ=2π ΔX / λ
در صورتی که اختلاف فاز دو اشعه بازتابش مضرب صحیحی از 2π باشد دو اشعه تداخل سازنده ایجاد می کنند و قله ماکزیمم ایجاد می شود.
هنگامی که قانون براگ برقرار باشد با استفاده از اطلاعات موجود در الگوی پراش ایکس می توان فاصله متوسط بین صفحه های کریستالی را بدست آورد. همچنین، با در نظر گرفتن شدت قله های ماکزیمم و مقایسه آن با الگوهای استاندارد میتوان ساختار اتم ها و فاز کریستالی تعیین کرد.

نقاط قوت آنالیز دستگاه XRD

  • تکنیکی سریع و قدرتمند در تشخیص مواد معدنی ناشناخته (کمتر از 20 دقیقه) می باشد.
  • در بیشتر موارد تشخیصی کاملاً دقیق و واضح دارد.
  • آماده سازی نمونه بسیار ساده می باشد.
  • تفسیر داده ها امری نسبتاً ساده می باشد.

نقاط ضعف آنالیز دستگاه XRD

  • نمونه تشخیصی مجهول ترجیحاً باید تک فاز و همگن باشد.
  • دسترسی به یک منبع الگو های پراش استاندارد الزامی است.
  • ترجیحاً نمونه باید کاملاً در حالت پودری باشد.
  • در نمونه های مخلوط حد تشخیص 2% نمونه می باشد.
  • پیک ها ممکن است همدیگر را پوشش دهند، که احتمال این اتفاق در زوایای بالاتر بیشتر می شود.

کاربردهای مختلف دستگاه XRD

دستگاه XRD در صنایع مختلفی ازجمله علم مواد و کانی شناسی، شیمی، فیزیک، زمین شناسی، صنایع دارویی و … کاربرد دارد. برای مثال از پراش اشعه ایکس در شناسایی ساختار نانومواد سنتزی، تشخیص فاز کریستالی سیمان و آنالیز مواد معدنی استفاده می شود.

از برترین برندهای ارئه دهنده دستگاه پراش اشعه X می توان برند شیمادزو (Shimadzu)، بروکر (Bruker)، ترموفیشر (Thermo Fisher)، پنالیتیکال (PANalytical) و فیلیپس (Philips) را نام برد. شرکت ری نور آزما با سال ها تجربه در زمینه تجهیزات آزمایشگاهی و کادری مجرب آماده ارائه کلیه خدمات مشاوره، فروش و سرویس دهی دستگاه های XRD می باشد.

طیف سنجی جذب اتمی (AAS)

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

طیف سنجی جذب اتمی (AAS)

 

مقدمه

اسپکتروسکوپی جذب اتمی (AAS) تکنیکی برای شناسایی و اندازه گیری ترکیبات عنصری یک نمونه از طریق مطالعه انر‍ژی تابشی به وسیله اتم ها است. در این سری از مقالات قصد داریم در مورد اسپکتروسکوپی جذب اتمی (AAS) ، اجزای این میکروسکوپ، قانون حاکم بر آن (قانون بیر-لامبرت)، انواع این میکروسکوپ و خطاهای ایجاد شده در آن بحث کنیم. در طیف‌سنجی به صورت مطالعه برهمکنش بین نور و ماده تعریف می‌شود به مطالعه ماده و خواص آن، با بررسی نورجذب شده از ماده مورد نظر می پردازد. اساس این روش بر این اصل استوار است که میزان پرتوی جذب شده هنگام عبور از نمونه، متناسب با غلظت عنصر مورد نظر است. این روش توانایی آنالیز حدود ۷۵ عنصر فلزی و شبه فلزی را دارا است. ولی توانایی آنالیز مواد غیر فلزی را بصورت مناسب ندارد.
اسپکتروسکوپی جذب اتمی (AAS) در زمینه های مختلف علمی، تحقیقاتی و تشخیصی مانند بیوشیمی، بهداشت محیط، زمین شناسی، داروسازی، شیمی، پزشکی به کار برده می شود. اجزای تشکیل دهنده محصولات اسپکتروسکوپی جذب اتمی (AAS)یا Atomic Absorption Spectroscopy شامل منبع تابش ، مونوکروماتورها و فیلترها ، اتمایزرها ، دتکتورها و نمایشگر خروجی می باشد. در اسپکتروفتومتر جذب اتمی AAS ، عنصر مورد نظر باید اتمیزه شده و سپس در مسیر پرتوهای خروجی از منبع تابش قرار گیرد. باتوجه به میزان جذب می توان مقادیر عناصر فلزی و شبه فلزی را در ترکیبات مختلف اندازه گیری نمود.

اساس کار اسپکتروسکوپی جذب اتمی (AAS)

اساس این تکنیک، استفاده از دستگاه جذب برای ارزیابی غلظت آنالیت در نمونه است؛ لذا نیازمند رابطه‌ای بین میزان نور جذب شده توسط نمونه و غلظت نمونه هستیم که همان قانون بیر لامبرت است. به طور خلاصه الکترون‌های اتم‌ها با جذب طول موج مشخصی (انرژی) می‌توانند به سطوح بالاتر انرژی بروند و برای مدت کوتاهی به حالت برانگیخته در بیایند. می‌دانیم که این مقدار انرژی جذب شده برای هر اتم با اتم دیگر متفاوت است. به زبان دیگر هر عنصری فقط به یک طول موج مشخص پاسخ می‌دهد. باریک بودن پرتو نور در این روش موجب می‌شود تا انرژی خاصی تولید شود و این روش بسیار دقیق و انتخاب پذیر باشد. هنگامی که اتم برانگیخته به حالت پایه برمی‌گردد طول موج مشخصی از خود ساطع می‌کند با اندازه‌گیری میزان جذب نمونه و رسم منحنی کالیبراسیون و قانون بیر لامبرت پی به میزان مجهول در نمونه می‌بریم.

آشنایی با دستگاه اسپکتروسکوپی جذب اتمی (AAS)

این دستگاه دارای ۵ قسمت اساسی است: ۱. منبع تابش ۲. اتم ساز ۳. مونوکروماتور ۴. دتکتور ۵. ثبات منبع تابش از مهمترین خصوصیاتش توانایی تولید باریکه‌ای از تابش با توان کافی و پایدار است. منابع در این روش باید خطی باشند مثل هالو کاتد لامپ‌ها hollow cathode lamps.

 

منبع تابش

هر منبع تابش (Radiation Source) باید بتواند خط طیفی (طول موج) عنصر مورد نظر را نشر کند، از شدت طیفی بالایی در مرکز طیف خطی عنصر برخوردار باشد، هدایت نوری بالایی داشته باشد و شدت تابشی آن در زمان طولانی ثابت باشد. به عبارتی دیگر منبع تابشی باید توان تولید باریکه ای از تابش با توان کافی و پایدار برای آنالیت مورد نظر را داشته باشد.
لامپ های کاتدی توخالی( HCL,Hallow cathode lamp) متداول ترین منابع تابشی هستند. این لامپ ها معمولا از یک کاتد توخالی استوانه ای از جنس عنصر مورد نظر می باشد. اعمال پتانسیل بین دو الکترود سبب یونش گاز و در نتیجه ایجاد جریان می شود. توخالی بودن کاتد سبب تجمع بیشتر الکترون ها و افزایش شدت نور تولیدی می شود. کاتیون های گازی با انرژی جنبشی مناسب سبب کندن تعداد اتم های فلزی از سطح کاتد می شوند و ابر اتمی تشکیل می شود که بخشی از آنها در حالت تهییج طیف نشری مشخصه فلز را نشر می کنند. عموما بیشتر این لامپ ها تک عنصری هستند یعنی جنس کاتد آنها فقط شامل یک عنصراست. اما گاهی ازعناصری مناسب برای ساخت یک آلیاژ کاتدی استفاده می شود که در این صورت، یک لامپ برای اندازه گیری دویا چند عنصر نیز به کار برده می شود.

 

شدت نشر به مقدار زیادی تحت تاثیر دما قرار می گیرد. به همین علت اتم سازها، نقش بسیار تعیین کننده ای در  آنالیز و اندازه گیری های طیف سنجی نشر اتمی دارند. اتم سازها در روش های نشری ضمن حلال زدایی، تبخیر و اتمی کردن نمونه، وظیفه تهییج اتم ها را نیز بر عهده دارند و بنابراین به عنوان منبع تابش نیز عمل می کنند. طیف سنجی نشر اتمی بر اساس منابع تهییج به چند دسته کلی زیر تقسیم می شوند:
  • طیف سنجی نشر اتمی شعله
  • طیف سنجی نشر اتمی پلاسما
  • طیف سنجی نشر اتمی قوس و جرقه
  • طیف سنجی نشر اتمی تخلیه تابش

انواع لامپ های منبع تابش در اسپکتروسکوپی جذب اتمی (AAS)

لامپ تخلیه بدون الکترود (Elrctrodeless Discharge Lamps, EDL) از منابع تابشی دیگری هستند که شدت نوری تا دوبرابر HCL فراهم می کنند و پهنای باند باریک تری دارند. EDL شامل یک لوله کوارتزی حاوی گاز بی اثر آرگون و مقادیر کمی از فلز یا نمک فلزی عنصر موردنظر است. در این لامپ هیچ الکترودی استفاده نشده ولی در عوض به یک منبع فرکانس رادیویی یا ماکروویو برای تهییج و یونیزه کردن اتم های آرگون نیاز است. شتاب اتم های یونیزه آرگون در میدان رادیویی و برخورد آنها با فلز سبب تولید اتم های آزاد فلز می گردد.
لامپ های EDL به زمان بیشتری برای پایدار شدن نیاز دارند و به اندازه HCL قابل اعتماد نیستند. تعداد کمی (در حدود پانزده فلز) از این نوع لامپ به صورت تجاری موجود هستند. برای فلزاتی مانند ارسنیک (As)، کادمیوم (Cd) و سلنیوم (Se) به خاطر شدت نور بیشتر حد تشخیص بهتری از HCL فراهم می کند.

اتم ساز

جذب نور نشرشده از منبع تابش توسط اتم های آزاد یک عنصر در حالت گازی صورت می گیرد. وظیفه اصلی یک اتم ساز (Atomizer) تولید اتم های آزاد مولکول ها یا یون های موجود در نمونه است. این قسمت برای دستگاه AAS بسیار با اهمیت است زیرا حساسیت اندازه گیری مستقیما با اتمی شدن آنالیت در نمونه و در نتیجه کارایی اتم ساز متناسب است.
روش های اتمی کردن متفاوتی تاکنون ارائه شده است. براساس نوع اتم ساز اسپکتروسکوپی جذب اتمی (AAS) به زیرمجموعه هایی تقسیم می شود که متداول ترین آنها اسپکتروسکوپی جذب اتمی (AAS) شعله و اسپکتروسکوپی جذب اتمی (AAS) الکتروترمال هستند.

مونوکروماتور

به طور کلی یک مونوکروماتور یا تکفام ساز (Monochromator) پرتو چندفام را به پرتو تک فام تبدیل می کند. این عمل معمولا با استفاده از منشور (Prism) و توری یا گریتینگ (Grating) صورت می گیرد. وظیفه اصلی مونوکروماتور دراسپکتروسکوپی جذب اتمی (AAS) جداسازی طول موج موردنظر (تابش رزونانسی عنصر کاتدی) از بقیه خطوط نشری ست که مواد موجود در کاتد یا گاز پرکننده منبع تابشی از خود ساطع می کنند.

قدرت جداسازی مونوکروماتور در  AAS چندان مهم نیست چون استفاده از منبع تابش ویژه هر عنصر فلزی این روش را تا حد زیادی گزینش پذیر کرده است. در هر صورت عرض شکاف های خروجی و ورودی به منظور افزایش حساسیت پهنای باند مناسب و مزاحمت های طیفی باید بهینه شوند.

آشکارساز

آشکارسازها (Detector) سیگنال نوری را در یک طول موج ویژه اندازه گیری می کنند. به این صورت که شدت نور دریافت شده از مونوکروماتور را به انرژی الکتریکی تبدیل می کنند. رایج ترین آشکارساز مورد استفاده در اسپکتروسکوپی جذب اتمی (AAS)، لوله های فوتو تکثیر کننده (Photomultiplier tube, PMT) هستند. اساس کار PMT بهره گیری از پدیده فوتوالکتریک است که در آن الکترون بعد از جذب انرژی، یک پرتو الکترومغناطیس از خود گسیل می کند. توانایی آشکارسازی PMT در محدوده نور مریی، ماورا بنفش و مادون قرمز نزدیک (۲۰۰ تا ۸۰۰ نانومتر)  قرار دارد.
آشکارساز PMT از یک لوله شیشه ای خلاء که در آن فوتوکاتد و به دنبال آن چندین دینود (Dynode) قراردارد، تشکیل شده است. فوتوکاتد با موادی که به راحتی یونیده می شوند، پوشیده شده است. این مواد معمولا مخلوطی از فلزات قلیایی مانند آلیاژ سزیم-انتیموان، که با برخورد نور الکترون گسیل می کنند، هستند. سپس این الکترون های گسیل شده بسوی یک دینود شتاب داده می شوند. با برخورد الکترون با دینود، الکترون های ثانویه ای با ضریب مشخص تولید می شود. هدایت الکترون های تولید شده در دینود اول به دینود دوم، که پتانسیل بیشتری دارد، سبب تولید تعداد بیشتری الکترون آزاد می شود. معمولا در هرPMT  تا ۱۰ دینود استفاده می شود که چون به صورت متوالی تعداد الکترون ها در هر دینود افزایش می یابد در نهایت حتی از سیگنال های ضعیف نیز پالس بلندی تولید می شود.

ثبات

برای خواندن سیگنال نیاز به صفحه نمایشی ست که بتواند اطلاعات رسیده از دستگاه را پردازش کند. وسایل بازحوانی (readout devices) دستگاه های الکترونیکی هستند که داده های حوزه الکتریکی را به اطلاعات قابل فهم برای مشاهده کننده فراهم می کنند. داده های آنالوگ جمع آوری شده با این دستگاه توسط یک مبدل (transducer) به فرمت دیجیتالی تبدیل می شوند که سپس این سیگنال به صورت دنباله ای از علامت یا اعداد در یک ثبات نمایش داده می شود. ثبات ها به شکل های مختلف پرینتر، شمارنده های دیجیتالی،  صفحه نمایش کامپیوتر و پانل های ال سی دی موجود می باشند.
در این دستگاه نور از یک منبع مناسب به نام هالو کاتد لامپ تولید و از سیستم تک رنگ کننده به یک آشکار ساز جهت داده می شود. از انجایی که هر اتم طول موج خاصی را جذب می کند برای اندازه گیری هر عنصر منبع نورهمان عنصر بکار می رود. نمونه مورد نظر در حلال خاصی بصورت محلول در آمده و توسط شعله , کوره گرافیتی و یا سیستم هیدرید به اتم آزاد و خنثی تبدیل میشود. پس از عبور پرتوی تک رنگ , مقداری از این پرتو توسط اتم های آزاد جذب می شود و از شدت آن کم می گردد. آشکارساز مقدار نور جذب شده به وسیله نمونه را با اندازه گیری شدت نور قبل و بعد از خروج از نمونه اندازه گیری می کند .با محاسبه مقدار پرتوی جذب شده توسط آشکارساز و به وسیله منحنی های کالیبراسیون میتوان غلظت عنصر مجهول در محلول را محاسبه کرد.این تکنیک ساده بوده و از دقت, صحت, تکرارپذیری و سرعت بالایی برخوردار است.

مراحل آنالیز اسپکتروسکوپی جذب اتمی (AAS)

  1. نمونه ها برای آنالیز باطیف سنج جذب اتمی ابتدا می بایست به صورت محلول هموژن شفاف در آیند.
  2. یک محلول بلانک یا شاهد باید تهیه گردد. یعنی حلالی با مقدار صفر از عنصر مورد آنالیز با جذب اتمی.
  3. یک سری از محلول های استاندارد می بایست تهیه گردد، این استاندارد ها حاوی غلظت های مشخص ولی متفاوت از عناصر مورد آنالیز می باشند. این استاندارد ها جهت ساخت منحنی کالیبراسیون کاربرد دارند.
  4. مقدار محلول بلانک یا شاهد باید توسط دستگاه اتمیک ابزوربشن خوانده شود. این به معنای مقدار جذب صفر برای غلظت هیچ است.
  5. همه استاندارد ها یک به یک باید با دستگاه Atomic Absorption خوانده شوند.
  6. برای محلول بلانک و دیگر استاندارد ها همراه مقادیر جذب آنها می بایست یک نمونه منحنی کالیبراسیون رسم شود.
  7. نمونه مجهول نیز توسط دستگاه جذب اتمی آنالیز شود، براساس مقایسه مقدار جذب این نمونه و مقایسه با مقادیر منحنی کالیبراسیون مقدار جذب نمونه مجهول، معلوم می شود.

همه چیز درباره طیف سنجی نشر اتمی (AES)

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

همه چیز درباره طیف سنجی نشر اتمی (AES)

 

مقدمه

طیف‌سنجی نشر اتمی (AES) روشی برای تجزیه و تحلیل شیمیایی است که از شدت نور تابیده شده از شعله، پلاسما، قوس یا جرقه در طول موج ویژه استفاده می‌کند تا مقدار عنصر را در یک نمونه مشخص کند. طول موج خط طیف اتمی در طیف انتشار، هویت عنصر را نشان می‌دهد در حالی که شدت نور تابیده شده با تعداد اتم‌های عنصر متناسب است.

اساس کار طیف سنجی نشر اتمی

اساس روش های طیف سنجی نشر اتمی (Atomic Emission Spectroscopy)  با نام اختصاری AES اندازه گیری شدت نشر یون یا مولکول در حالت گازی است. یون ها یا مولکول های گازی شکل که الکترون های لایه ظرفیت آنها بر اثر گرما، واکنش شیمیایی یا جریان الکتریکی تهییج می شوند، تابش های مشخصی در طول موج های مرئی و ماوراء بنفش دارند. مانند طيف جذبی، در طيف نشری هر عنصر نیز طول موج هاي معينی وجود دارد كه از ويژگی های مشخصه آن عنصر است. يعنی طيف های نشری و جذبی هيچ دو عنصري مثل هم نيست. اندازه گیری تابش نشر شده عنصر مورد نظر کاربرد زیادی در آنالیز کمی و کیفی عناصر فلزی و شبه فلزی دارد. شکل زیر شمای کلی فرایند جذب و نشر اتمی بین دو تراز انرژی را نشان می دهد.

 

شدت نشر خودبخودی تابشی توسط یک اتم از رابطه زیر بدست می آید:

Iem=AjijiNj                                        (1)

که در آن Iem شدت نور تابشی، Aji احتمال انتقال برای نشرخودبخودی، h ثابت پلانک، νji فرکانس تابشی و Nتعداد اتم در حالت برانگیخته است. تعداد اتم های برانگیخته و در نتیجه شدت نشر متناسب با غلظت اتم ها ست. بنابراین رسم شدت نشر بر حسب غلظت یک خط صاف خواهد بود (در غلظت های پایین)..
اگر تعادل ترمودینامیکی برقرار باشد رابطه توزیع بولتزمن برای غلظت اتم ها در حالت برانگیخته و پایه به صورت زیر بیان خواهد شد:

Nj/No=(gj/go)e-Ej/kT                                              (2)

که در آن Nj و No تعداد اتم ها در حالت برانگیخته (ترازj ) و تراز پایه، gj و go وزن های آماری این ترازها، Ej اختلاف انرژی تراز برانگیخته و پایه، K ثابت بولتزمن و T دما ( برحسب کلوین) هستند.
در طیف سنجی نشر اتمی، تابش نشر شده توسط اتم های تهییج شده متناسب با غلظت اتم ها ست در صورتی که در جذب اتمی تابش جذب شده به وسيله اتم های تحريک نشده تعيين می شود. تعداد اتم های تهییج شده نسبت نمایی با دما دارد. بنابراین شدت نشر که به تعداد اتم های تهییج شده بستگی دارد به مقدار زيادی تحت تاثير دما قرار می گيرد. در حالی که در طیف سنجی جذب اتمی، که تعداد اتم های تهییج نشده بااهمیت است، شدت جذب مستقيما تحت تاثير دمای اتم ساز قرار نمی گيرد.

دستگاهوری طیف سنجی نشر اتمی

طیف سنجی نشر اتمی از نظر دستگاهوری (Instrumentation) شبیه طیف سنجی جذب اتمی ست جز این که به منبع تابشی در روش نشری نیازی نیست. به همین علت به راحتی با خاموش کردن منبع تابشی (معمولا HCL) می توان یک طیف سنجی جذب شعله را به یک طیف سنجی نشرشعله تبدیل کرد. اما بیشتر روش های نشری به دلیل استفاده از منابع اتمی کننده و تهییجی اختصاصی تری مانند پلاسما، قوس، جرقه و لیزر طراحی های پیچیده تری دارند. اجزا کلی یک طیف سنج نشری در شکل زیر نشان داده شده است.

 

منبع تابش

همان طور که گفته شد تعداد اتم های تهییج شده طبق توزیع بولتزمن نسبت نمایی با دما دارند (رابطه 2). بنابراین شدت نشر به مقدار زيادی تحت تاثير دما قرار می گيرد. به همین علت اتم سازها، نقش بسیار تعیین کننده ای در  آنالیز و اندازه گیری های طیف سنجی نشر اتمی دارند. اتم سازها در روش های نشری ضمن حلال زدایی، تبخیر و اتمی کردن نمونه، وظیفه تهییج اتم ها را نیز بر عهده دارند و بنابراین به عنوان منبع تابش نیز عمل می کنند. طیف سنجی نشر اتمی بر اساس منابع تهییج به چند دسته کلی زیر تقسیم می شوند:
  • طیف سنجی نشر اتمی شعله
  • طیف سنجی نشر اتمي پلاسما
  • طیف سنجی نشر اتمي قوس و جرقه
  • طیف سنجی نشر اتمی تخلیه تابش

طیف سنج

همان طور که گفته شد طیف های نشری بسیار پیچیده تر و شلوغ تر از طیف های جذبی هستند. بنابراین طیف سنج (Spectrometer) در نشر اتمی اهمیت بسیار ویژه تری نسبت به روش های جذب دارد. ضمن اینکه همه عناصر موجود در نمونه نیز بعد از تهییج در منبع تابش به طور همزمان طیف نشری خود را منتشر می کنند. بنابراین واضح است که از این روش برای اندازه گیری چند عنصری استفاده شود.
برای طیف سنجی نشر اتمی شعله، که دمای کمتری دارد و برای آنالیز عناصر قلیایی و قلیایی که طیف نشری ساده ای دارند به کار می رود، از فیلتر فومتر برای تفکیک طول موج استفاده می شود.
تفکیک طول موج برای طیف های بسیار پیچیده نشری حاصله از پلاسما، قوس و جرقه الکتریکی که دمای بالاتر دارند، نیاز به وسایل نوری پیشرفته تری دارد. این تجهیزات باید بتوانند تفکیک طول موجی بالا (حداقل 0.01nm)، محدوده دینامیکی گسترده، شناسایی و انتخاب صحیح طول موج، پایداری بالا در برابر تغییرات محیطی و تصحیح زمینه آسانی داشته باشند.
طیف سنج ها در این دستگاه ها شامل تک فام ساز، آشکارساز و یک مبدل هستند. طیف سنج ها بر اساس عملکردشان در تفکیک طول موج و در نتیجه آنالیز عنصری به دو نوع ترتيبی (Sequential) و همزمان (Simultaneous) تقسیم می شوند.

طیف سنج ترتیبی (Sequential spectrometer)

در دستگاه های ترتیبی در هر زمان شدت نشری یک عنصر اندازه گیری می شود یعنی به صورت متوالی و پشت سرهم شدت خط نشری عناصر مورد نظر یک به یک اندازه گیری می شود. طیف سنج های ترتیبی اغلب شامل یک گریتینگ (grating) یا توری هستند که با چرخش کنترل شده طول موج های مورد نظر را به ترتیب بر روی شکاف خروجی متمرکز می کند. در این نوع دستگا ها آشکارساز در هر زمان فقط یک طول موج را اندازه گیری می کند و معمولا هم از آشکار ساز PMT استفاده می شود. برای اندازه گیری چند عنصر دستگاه های ترتیبی زمان بسیار بیشتری برای آنالیز مورد نیار است بنابراین اگرچه این دستگاه ها ساده تر و ارزان تر هستند ولی مصرف نمونه بیشتر و زمان آنالیز بالاتری دارند.

طیف سنج همزمان (simultaneous spectrometers)

طیف سنج های همزمان یا چند کاناله (multichannel) شدت خط نشری همه عناصر مورد نظر در یک زمان اندازه گیری می شود. تابش از میان توری های چند رنگ کننده گذر می کند و روی شکاف هاي گوناگون بازتابانده می شود به گونه اي که هر شکاف طول موج ویژه اي را پدید می آورد. دونوع عمومی دارند: چندرنگ کننده ها (Polychromator) و اسپکتروگراف (Spectrograph). پلی کروماتورها برای اندازه گیری و آنالیز همزمان چند عنصر استفاده شده و از چندین آشکار ساز PMT برای اندازه گیری شدت طیفی استفاده می کنند. عمومی ترین آرایش یا چیدمان یک اسپکترومتر چند کاناله با آشکار ساز PMT به دایره رولند (Rowland circle) معروف است که در شکل زیر به صورت شماتیک نشان داده شده است:

 

اسپکتوگراف ها شامل یک سری آشکارسازهای کوچک فوتوحساس هستند.  این  آشکارسازهای به گونه ای در کنار هم قرار گرفته اند که تمام عناصر یک دسته پرتو پاشیده شده از مونوکروماتور را هم زمان اندازه گیری می کند. دو نوع آشکار ساز دستگاه انتقال بار (Charge transfer devices) شامل دستگاه شارژ تزریقی (Charge-Injection Devices, CID) و دستگاه شارژ جفتی (Charge-Coupled Devices, CCD) از انواع متداول آشکارسازهای مورد استفاده در اندازه گیری های چند کاناله همزمان هستند.
در وسایل انتقال بار برخورد فوتون با سطح دیود تولید جفت های حفره- الکترون می کند. حفره-الکترون های مثبت به طور آزادانه در نیمه هادی نوع P حرکت می کند اما الکترون ها در خارن های ذخیره می شوند. هر خازن دارای یک الکترود کوچک نیز هست که با اعمال پتانسیل مثبت به این الکترود سبب می شود الکترون های تولید شده در زیر لایه عایق به دام بیافتند. با جاگذاری درست الکتردهای فلزی به راحتی یک آرایه دو بعدی ایجاد می شود. تفاوت CCD و CID  در نوع بازخوانی آنهاست. در CCD بازخوانی به صورت انتقال پیاپی بار به آمپلی فایر صورت می گیرد اما در CID بازخوانی با انتقال بار بین الکترودهای مجاور انجام می شود. این سبب می شود نوع CID دسترسی تصادفی سریعتر  و  زمان های انتگرال گیری بیشتری را داشته باشد.

نکات آنالیزی روش های طیف سنجی نشر اتمی

  • امکان آنالیز کمی و کیفی عناصر فلزی و شبه فلزی
  • برای بیشتر عناصرحد تشخیص در محدوده (g/mL, mg/μL) یا ppm و (g/μL) یا ppb
  • امکان اندازه گیری مستقیم نمونه های جامد ( روش قوس و جرقه الکتریکی)
  • اندازه گیری هم زمان چند عنصری
  • عدم نیاز به منبع تابش نور
  • مزاحمت نشری در آنالیزهای کمی
  • تجهیرات گرانتر و شرایط اپراتوری پیچیده تر  نسبت به روش های طیف سنجی جذب اتمی

کروماتوگرافی گازی و هر آن چه که باید درباره آن بدانید

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

کروماتوگرافی گازی و هر آن چه که باید درباره آن بدانید

مقدمه

کروماتوگرافی گازی (Gas Chromatography, GC) برای جداسازی و آنالیز ترکیبات فرار به کار می رود. اجزای یک نمونه تبخیر شده، با تقسیم بین یک فاز متحرک گازی و فاز ساکن جداسازی می شوند. نمونه های جامد یا مایع ابتدا باید به بخار یا گاز تبدیل شوند و سپس با کروماتوگرافی گازی اجزاء آن را جداسازی و شناسایی کرد. شرط جداسازی در این روش آنست که نمونه مورد نظر با حرارت دادن و تبدیل شدن به گاز تجزیه نشود. کروماتوگرافی گازی یک تکنیک قوی ست که امکان جداسازی ترکیبات بسیار پیچیده را در حداقل زمان ممکن فراهم می کند.
کروماتوگرافی گازی به دو دسته گاز-مایع (gas-liquid chromatography, GLC) و گاز-جامد ( gas-solid chromatography, GSC) تقسیم می شود. اساس روش GLC، که کاربرد بسیار گسترده تری دارد، تقسيم آناليت بين فاز متحرك گازی و يك فاز مايع تثبيت شده بر سطح يك جامد بی اثر است. روش GSC بر پايه فاز ساكن جامدی بنا شده است كه در آن بازداری آناليت ها نتيجه جذب سطحی فیزیکی است. به علت بازداری نیمه دائمی ترکیبات فعال یا قطبی که سبب دنباله دار شدن پیک ها می شود، روش GSC کاربرد محدودی دارد.
برخلاف بیشتر روش های کروماتوگرافی فاز متحرک برهم کنشی با مولکول های آنالیت نداشته و فقط نقش انتقال آنالیت در ستون را به عهده دارد. از این رو به فاز متحرک در GC گاز حامل (Carrier gas) نیز می گویند. هر مولکولی که برهم کنش بیشتری با فاز ساکن داشته باشد و بیشتر جذب ستون شود، دیرتر از ستون خارج می شود. با توجه به اهمیت فشار و دما در کروماتوگرافی گازی اغلب از حجم بازداری به جای زمان بازداری استفاده می شود.

آشنایی با دستگاه کروماتوگرافی

اولین دستگاه کروماتوگرافی گازی از نوع گاز-مایع در سال 1955 وارد بازار شد و از آن پس بالغ بر صد مدل مختلف توسط شرکت های مختلف ارائه شده است که بر حسب امکانات و لوازم جانبی دستگاه، قیمت های متنوعی دارند. شمای کلی دستگاه های GC در شکل بالا نشان داده شده است. قسمت های اصلی دستگاه های GC عبارتند از:

مخزن گاز حامل

فاز متحرک یا گاز حامل تنها وظیفه انتقال نمونه از ستون را به عهده دارد. به طور کلی گاز حامل باید نسبت به نمونه و حلال بی اثر باشند، خلوص بالایی داشته و در دسترس باشد، ارزان بوده و مناسب آشکارساز مورد استفاده باشد.
هلیوم، آرگون، نيتروژن و هيدروژن به عنوان گاز حامل به کار برده می شوند. گاز حامل باید خالص، بدون رطوبت و عاری از اکسیژن باشد. خلوص گاز حامل مهم ترین ویژگی آن است زیرا وجود ناخالصی در گاز حامل سبب ایجاد نویز (noise) شده و بر حساسیت تاثیر می گذارد و در نتیجه دقت کمی آنالیز را کاهش می دهد.
حضور ترکیباتی مانند آب و اکسیژن سبب مشکلاتی در آنالیز خواهد شد. حضور اکسیژن باعث اکسداسیون و تغییر حجم بازداری شده و در نتیجه تفکیک پذیری را کاهش می دهد و اگر فاز ساکن قطبی باشد به فاز ساکن صدمه وارد کند. آب به دلیل هیدروژناسیون می تواند هم به فاز ساکن و هم نمونه آسیب برساند.
نوع گاز حامل تاثیر زیادی در کارایی ستون و زمان آنالیز دارد. گاز حامل سبکی مانند هیدروژن با سرعت زیادی که دارد باعث کاهش کارایی ستون می شود و زمان آنالیز را کاهش می دهد، در عوض گاز حامل نیتروژن که سنگین تر است سبب افزایش کارایی ستون شده ولی زمان آنالیز را افزایش می دهد. در واقع در حجم بهينه و مناسب، نیتروژن بالاترین کارایی را دارد. گاز هليم خطری ندارد و از راندمان آن در سرعت های بالا نیز كاسته نمی شود. هیدروژن به علت قابلیت انفجار و مشکلات نگهداری آن کمتر مورد توجه است.
اگرچه هلیوم گاز متداولی برای GC است ولی استفاده از آن به علت گران بودن قیمت، با محدودیت همراه است. در حجم بهينه و مناسب، نیتروژن بالاترین کارایی را دارد ولی در سرعت بالا از کارایی آن کاسته می شود. بنابراین برای آنالیز معمول، غالبا نیتروژن به عنوان گاز حامل به کار می رود.
گازی که به دستگاه و در نتیجه به ستون وارد می شود باید فشار و سرعت جریان مشخص و ثابتی داشته باشد. برای این منظور لوازم جانبی مانند کنترل کننده جریان، رگلاتور های فشار، روتامتر و غیره برای تنظیم و کنترل فشار و سرعت جریان گاز حامل استفاده می شود. روتامتر یک وسیله برای اندازه گیری دبی مایعات و گازها ست. فشار ورودی در دستگاه GC 10-50 psiبالاتر از فشار اتاق است. سرعت جریان گاز حامل برای برای ستون های پرشده 25-150  میلی لیتر بر دقیقه و برای ستون های مویین 0.1-25 میلی لیتر بر دقیقه است.  میزان سرعت جریان گاز حامل به قطر ستون و  نوع گاز بستگی دارد.

سيستم تزريق نمونه

نمونه های مورد آنالیز توسط سیستم تزریق نمونه یا انژکتور (Injector) به ستون وارد می شوند. نمونه پس از ورود به injector به بخار تبديل شده، با فاز متحرك مخلوط شده و سپس برای جداسازی وارد ستون مي شود. برای دست یابی به کارایی بالای ستون، نمونه باید در اندازه مناسب و به صورت توده ای (plug) از بخار، وارد ستون شود. تزرق آرام و اندازه نامناسب نمونه باعث پخش شدن آن در ستون و جداسازی ضعیف می شود.
تزریق می تواند به صورت دستی با سرنگ های مخصوص انجام شود یا به صورت اتوماتیک. تمامی دستگاه های مدرن امروزی دارای سیستم تزریق اتوماتیک نمونه (auto sampler) هستند. ستون های مویی گنجایش خیلی کمی برای نمونه دارند و تزریق بیش از ظرفیت ستون سبب سرریز شدن (over loading) می شود بنابراین روش های تزریق مختلفی دارند.
تزریق نمونه های گازی بیشتر از طریق شیر (valve) با نام اختصاصی (gas sampling valve, GSV) انجام می شود. این شیرها معمولا یک حلقه نمونه (sample loop) دارند که به نسبت حجمی که باید تزریق گردد، می توانند اندازه های مختلفی داشته باشند.
در ستون های مویی مقدار کم نمونه لازم است و بعضی مواقع این مقدار نمونه آنقدر کم است که میکرو سرنگ های معمول قادر به تزریق آن مقادیر نخواهد بود. در این حالت از سیستم تقسیم کننده نمونه (split injector) استفاده می شود که فقط بخش کوچکی از نمونه تزریق شده وارد ستون شود. سرعت جریان و دمای تزریق از موارد مهم در سیستم های تزریقی است.

ستون ها و آون

ستون مهم ترین قسمت دستگاه های کروماتوگرافی ست که نقش اصلی جداسازی را بر عهده دارد. به طور کلی در GC دو نوع ستون به کار می رود. ستون های پرشده یا فشرده (packed column) و ستون های مویی (capillary column).
ستون های پرشده اولین نوع ستون های مورد استفاده بوده و از جنس لوله های فلزی یا شیشه ای هستند که با ذرات جامد کاملا پر می شوند. ستون های از جنس فولاد بسیار مقاوم هستند ولی باید توسط کارخانه سازنده پر شوند. ستون های مسی انعطاف پذیر بوده،  به راحتی پر می شوند و به شکل مارپیچ درآیند ولی به علت تشکیل اکسید مس در جداره ستون امکان کاتالیز برخی واکنش ها وجود دارد. ستون های شیشه ای اگرچه شکننده هستند ولی به علت شفاف بودن، تشخیص حباب های هوا در ستون امکان پذیر است. ستون های پرشده معمولا بین 2 تا 3 متر طول و 2-4 میلی مترقطر داخلی هستند. ماده پرکننده باید ذرات کروی یکنواخت با قدرت مکانیکی خوب، سطح ویژه مناسب و بی اثر در دماهای بالا باشد.
ستون های مویی به شکل لوله های باز از جنس شیشه های کوارتزی یا فلزی هستند که فاز ساکن به صورت یک لایه فیلم نازک روی دیواره داخلی  ستون قرار گرفته است. این ستون ها به دو دسته کلی تقسیم می شوند:
لوله ای باز دیوار اندود (Wall coated open tubular, WCOT)
سطح داخلی ستون با لایه بسیار نازکی از فاز ساکن پوشانده شده است. از متداول ترین نوع WCOT ستون های لوله باز سیلیس جوش خورده (Fused silica open tubular, FSOT) است که از سیلیس حاوی مقادیر کم اکسدهای فلزی  ساخته شده و با پوشش پلی ایمیدی کاملا انعطاف پذیر بوده و می توان آنها را به صورت مارپیچ یا حلقه در آورد.
لوله ای باز تکیه گاه اندود (Support coated open tubular, SCOT)
در این نوع ستون سطح درونی لوله بالایه نازکی از مواد نگهدارنده مانند خاک دیاتومه  (به ضخامت تقریبی 30 میکرومتر) پوشانده می شود و سپس فاز ساکن بر روی آن قرار داده می شود.  ستون های SCOT ظرفیت پذیرش مقدار بیشتری از نمونه را دارد زیرا به دلیل ضخامت فاز ساکن دیرتر از ستون های WCOT اشباع می شوند.
طول ستون های مویی از 15 تا 50 متر و قطر داخلی آنها از 0.15 تا 0.55 میکرومتر متغیر است.
انتخاب ماده مناسب به عنوان فاز ساکن برای یک جداسازی خوب و کارایی مناسب بسیار با اهمیت است. فاز ساکن باید از نظر شیمیایی بی اثر بوده و پایداری حرارتی خوبی داشته باشد.  برای فازهای ساکن مایع باید فراریت کمی نیز داشته باشند به طوری که نقطه جوش مایع حداقل 100 درجه سانتی گراد بالاتر از ماکزیمم دمای عملی ستون باشد. متداول ترین فازهای ساکن مورد استفاده برای ستون های پرشده از خاك طبيعي یا دياتومه تهیه می شوند. فازهای ساکن متداول معمولا از جنس پلی سیلوکسان ها یا پلی اتیلن گلیکول هستند که پایداری حرارتی تا 350 درجه سانتی گراد را دارند. فازهای ساکن بر حسب پیوند شیمیایی به دو دسته کلی قطبی و غیر قطبی تقسیم می شوند.
دمای ستون پارامتر بسیار با اهمیتی ست که باید با دقت چند دهم سانتی گراد برای کارهای دقیق کنترل شود. بنابراین ستون باید در یک سیستم پایش دما یا آون قرار داده شود. دماي ستون بايد چند درجه بالاتر از نقطه جوش دير جوش ترين جزء موجود در نمونه باشد.  کنترل دمایی به دو صورت ایزوترمال (isothermal) یا تک دما و گرادیانی یا برنامه ریزی شده (programming) انجام می شود.
در روش ایزوترمال در طول آنالیز دما ثابت بوده و تغییر نمی کند و بيشتر زماني استفاده مي شود كه در نمونه فقط يك ماده مورد شناسايي وجود دارد يا اگر چند ماده وجود دارد، نقطه جوش آنها نزديك به هم است. در کنترل دمایی برنامه ریزی شده دمای ستون به طور پیوسته یا مرحله ای در طول آنالیز تغییر می کند و در مواقعي استفاده مي شود كه اجزاء موجود در نمونه گستره وسيعي از نقطه جوش دارند.

آشكارساز

شناسایی تمامی اجزاء شیمیایی نمونه ای که به ستون تزریق شده و یا یک گروه یا جزء ویژه از نمونه، وظیفه اصلی آشکارساز در GC است. در واقع آشکارساز با حضور اجزاء موجود در گاز حاملی که به آشکارساز می رسد، پاسخ الکتریکی می دهد. اگر آشکارسازی بتواند به تمام انواع نمونه های موجود پاسخ قوی دهد یک آشکارساز عمومی (universal) و اگر فقط به گروه یا ترکیبات ویژه ای واکنش نشان دهد، یک آشکارساز انتخابی ست.
یک آشکارساز ایده آل در GC باید حساسیت مناسب داشته، پایدار باشد، و از دقت، صحت و تکرارپذیری مناسبی برخوردار باشد. ضمنا باید زمان پاسخ مناسبی داشته باشد که با سرعت عبور اجزا با گازحامل از آشکارساز بتواند واکنش نشان دهد. حد تشخیص (detection limit) و گستره خطی (linearity range) آشکارساز برای آنالیزهای کمی بسیار اهمیت دارد.

آشکارساز یونش شعله ای (Flame ionization detector, FID)

آشکارساز یونش شعله ای یا FID متداول ترین آشکارساز مورد استفاده در GC است که از یک شعله هوا/هیدروژن برای پیرولیز ترکیبات آلی و یک جمع کننده (collector) برای جمع آوری یون ها و الکترون های تولید شده از فرایند پیرولیز تشکیل شده است. جریان الکتریکی حاصل از یونیزه شدن اتم های کربن با یک امپلی فایر تقویت می شود. پاسخ آشکارساز به نسبت هوا/هیدروژن و گاز حامل وابسته است. حساسيت و گستره خطی بالا، نویز پایین و سهولت استفاده از مزایای این آشکارساز است.
ترکیبات آلی حاوی گروه هاي عاملي مانند كربونيل، الكل، هالوژن و آمين، يون هاي بسيار كمي توليد مي كنند و يا اصلا توليد نمي كنند. و هم چنین به گازهای احتراق ناپذیرشامل SO2, NOx ،CO2  وH2O حساس نیست و برای ترکیبات غیرآلی نیز پاسخی ندارد. چون این آشکارساز به آب و اکسیدهای نیتروژن و گوگرد حساس نیست تجزیه نمونه های آلی شامل این ترکیبات بسیار مفید است.

آشکارساز گرما رسانندگی (Thermal Conductivity Detector, TCD )

آشکارساز گرما رسانندگی یا TCD یک آشکارساز عمومی ست که برای شناسایی هم ترکیبات آلی و هم معدنی به کار می رود. اساس آن تغییرپذیری هدایت گرمایی یک گاز است که به وسیله تغییر مقاومت فلزی واقع در یک محفظه گرمایش سنجیده می شود.
این آشکار ساز دارای دو محفظه گرمایشی کاملا مشابه هستند که هرکدام یک فیلامان از جنس تنگستن، طلا یا پلاتین هستند که به طور الکتریکی گرم می شوند. گاز حامل خالص از یک محفظه و گاز خارج شده از ستون حاوی نمونه از محفظه دیگر عبور می کنند. حضور مقادیر کم نمونه سبب تغییر هدایت پذیری شده و در نتیجه فیلامان نمونه داغتر ار فیلامان گازحامل می شود و این باعث اختلاف مقاومت و اختلاف جریان بین دو فیلامان می شود. آشکارساز میزان اختلاف جریان بین دو محفظه را ثبت نموده به صورت پیک نشان می دهد. هیدروژن و هلیم تا ده بار هدایت پذیری بیشتری از ترکیبات آلی دارند.
گازهای هلیم و هیدروژن بیشترین اختلاف را ایجاد می کنند و بنابراین حساسیت بیستری دارند. گاز نیتروژن تفاوت کمی در هدایت گرمایی ایجاد می کند بنابراین برای استفاده با این آشکارساز چندان مناسب نیست. از مزایای این آشکارساز عدم تخریب نمونه و پاسخ به تمامی ترکیبات آلی و معدنی ست. در مقایسه با آشکارساز های دیگرحساسیت بالایی ندارند.

آشکارساز الکترون گیرانداز  (Electron capture detector, ECD)

در آشکارساز الکترون گیرانداز  یا ECD نمونه خروجی از ستون وارد یک سل شیشه ای می شود که اتم های رادیو اکتیو نشر کننده β مانند 63Ni دوپه شده است. الکترون نشر شده از اتم های رادیواکتیو سبب یونیزاسیون گاز حامل شده و در غیاب گونه های آلی یک جریان ثابتی از الکترون ایجاد می شود. در حضور گونه های گیرنده الکترون، این جریان ثابت کاهش می یابد. کاهش جریان متناسب با غلظت گونه های گیرنده الکترون است. از هلیم و هیدروژن به عنوان گاز حامل نمی توان استفاده کرد چون یونیزه نمی شوند. این آشکارساز بسیار گزینش پذیر است و به مولکول های دارای گروه های الکترونگاتیو مانند هالوژن ها، کینون ها، گروه های نیترو و پراکسیدها حساس است اما پاسخی برای گرو های الکل، آمین و هیدروکربنی ندارد. ECD یک آشکارساز مهم و متداول در آنالیز و اندازه گیری حشره کش های کلردار است. از عیوب این آشکارساز گستره خطی کم آن است.
سه آشکارساز FID, TCD و ECD متداول ترین آشکارسازهای مورد استفاده در GC هستند. برحسب موارد خاص آشکارسازهای گزینش پذیر بسیاری معرفی و ساخته شده اند.

آشکارساز طیف سنج جرمی (Mass Spectrometry detectors):

آشکارساز طیف سنج جرمی یکی از قوی ترین آشکارسازهای مورد استفاده در GC است که تلفیقی از روش GC و طیف سنج جرمی است. استفاده از نام اختصاری GC-MS در سال های اخیر متداول تر شده است. در طیف سنج جرمی جداسازی یون ها بر اساس نسبت جرم به بار (m/z) آنها و تحت تاثیر میدان های الکتریکی و مغناطیسی صورت می گیرد. در واقع اجزای نمونه پس از جداسازی در ستون کروماتوگرافی و حذف گاز حامل، وارد محفظه یونش طیف سنج جرمی می شوند و با استفاده از میدان های الکتریکی و مغناطیسی شناسایی کمی و کیفی اجزاء نمونه براساس m/z صورت می گیرد. در كروماتوگرافي گازي- طيف سنج جرمي (GC-MS)، خروجی ستون GC وارد طیف سنج جرمی می شود. بنابراین GC-MS فقط قادر به شناسایی و اندازه گیری ترکیباتی ست که بتوان به GC تزریق کرد یعنی ترکیبات فرار یا ترکیباتی که با مشتق سازی یا حلال های خاص امکان فرار بودن پیدا می کنند.
امروزه دستگاه GC را می توان با دو طیف سنج جرمی متوالی (tandem) تلفیق کرد که این روش تلفیقی GC-MS/MS تکنیک بسیار قوی برای شناسایی اجزاء یک مخلوط است.

آنالیز کمی و کیفی با کروماتوگرافی گازی

جهت شناسايي کیفی مواد با GC از زمان بازداریtR  استفاده مي شود. زمان بازداری زماني است كه طول مي كشد تا جسم ازآشکارساز خارج شود، يعني از زمان تزريق نمونه تا زمان ظاهرشدن پيك ها روي دستگاه كه براي هر جزئی در نمونه تحت شرايط ثابت، مقداري ثابت است. از مقايسه زمان بازداری  نمونه یا جزء معلوم با زمان بازداری  نمونه مجهول، مي توان اجزاي موجود در نمونه مجهول را تشخيص داد. شاخص بازداری کواتس (kovats retention index) نیز یک برای شناسایی ترکیبات مجهول به خصوص الکان ها کاربرد ویژه ای دارد. در واقع کتابخانه های از شاخص های بازداری مواد ایجاد شده اند که با داشتن شاخص بازداری ترکیب مجهول، امکان شناسایی آن فراهم می شود.
اندازه گیری کمی معمولا بر اساس سطح زیر منحنی (Area under curve, AUC) هر پیک انجام می شود. با رسم سطح زیر پیک نمونه های استاندارد برحسب غلظت آنها، و مقایسه سطح یر پیک  نمونه مجهول غلظت آن تخمین زده می شود.

نکات

– جداسازی و آنالیز ترکیبات فرار و ترکیباتی که امکان تبدیل شدن به گاز بدون تجزیه شدن را دارند.
–  سريع و ساده
– قابلیت اندازه گیری کمی و شناسایی کیفی
– ترکیباتی که نقاط جوش نزدیک به هم دارند و جداسازی آنها به روش تقطیر مقدور نیست توسط GC قابلیت جداسازی و اندازه گیری را دارند.
– امکان جداسازی ترکیبات پیچیده در حداقل زمان

 کاربرد کروماتوگرافی گازی

فارماکولوژی: آنالیز مواد باقیمانده و حلال ها در محصولات میانی و نهایی، سنجش داروها، اندازه گیری ناخالصی ها و مواد فرار
كشاورزی و صنایع غذایی: آنالیز باقیمانده سموم ، حشره کش ها، قارچ کش ها و .. ، آنالیز عطر و اسانس، تشخیص تقلب مواد عذایی (Food adulteration) ، پروفایل اسیدهای چرب و ..
محیط زیست: آنالیز ترکیبات فرار در منابع آبی و پساب ها، آنالیز هوا و مانیتورینگ آلاینده های اتمسفری، باقیمانده سموم و…
پتروشیمی: آنالیز گازهای پالایشگاه، میعانات گازی و …
صنایع آرایشی بهداشتی

معرفی رشته شیمی تجزیه و کاربرد آن

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

معرفی رشته شیمی تجزیه و کاربرد آن

معرفی شیمی تجزیه :

شیمی تجزیه (Analytical Chemistry) یکی از زیر شاخه های مهم و کاربردی علوم پایه شیمی است که به مطالعه تشخیص ، جداسازی و تعیین یک یا چند گونه شیمیایی میپردازد.

انواع آنالیز:

1.تجزیه کمی :

در تجزیه کمی مقدار یا غلظت دقیق مواد تعیین میشود.

2.تجزیه کیفی :

در تجزیه کیفی هدف شناسایی مواد و نوع اجزای ماده است.
“به طور کلی تجزیه کیفی بر تجزیه کمی مقدم است یعنی ابتدا نوع اجزای یک نمونه و بعد مقدار کمی آنها تعیین میشود.”

روش های آنالیز :

1. تجزیه کلاسیک :

مهم ترین روش های تجزیه کلاسیک روش های وزن سنجی و روش های تیتراسیون هستند که از ابزار های چنان پیشرفته ای استفاده نمی شود.به عنوان مثال روش وزن سنجی رسوبی که دقیق ترین روش تجزیه کمی ماکرو است که در این روش جسم مورد تجزیه به صورت انتخابی به رسوبی کم محلول تبدیل شده و پس از صاف کردن و شست و شو با حلال مناسب برای خارج کردن ناخالصی ها ، خشک یا سوزانده شده و در کوره به محصولی پایدار و ثابت تبدیل میشود و پس از سرد کردن در خشکانه نمونه توزین شده  و مقدار آن تعیین میشوند مانند اندازه گیری آهن به صورت آهن (III) اکسید (Fe2O3) یا اندازه گیری یون نیکل (ΙΙ) با استفاده از شناساگر دی متیل گلی اکسیم(DMG) ,… .

2.تجزیه دستگاهی :

در این روش از ابزار ها و دستگاه های پیشرفته تر استفاده میشود که از جمله این روش ها میتوان روش های کروماتوگرافی ، روش های طیف سنجی و روش های الکتروشیمی را نام برد.

تاریخچه شیمی تجزیه :

شیمی تجزیه از همان آغاز پیدایش علم شیمی مهم بوده است، و شامل روش هایی برای تعیین اینکه کدام عناصر و مواد شیمیایی در نمونه ماده مورد نظر وجود دارد، است. در طول این دوره، کمک های مهم در شیمی تجزیه شامل تجزیه و تحلیل عناصر سیستماتیک توسط جاستیوس وون لیبیگ (Justus von Liebig) ارائه شد.
اولین تجزیه و تحلیل ابزاری ، طیف سنجی انتشار شعله ای بود که توسط دو دانشمند معروف رابرت بونزن (Robert Bunsen) و گوستاوکیرشووف (Gustav Kirchhoff) صورت گرفت و باعث کشف روبیدیوم (Rb)و سزیم (Cs) در سال1860  شد.
بیشتر تحولات عمده در شیمی تجزیه پس ازسال 1900 اتفاق افتاد . در طول این دوره، تجزیه و تحلیل ابزاری به طور مداوم در این زمینه گسترش یافت . به ویژه، بسیاری از تکنیک های اولیه اسپکتروسکوپی و اسپکترومتریک در اوائل قرن بیستم کشف شده و در اواخر قرن بیستم تصحیح شد.

مفاهیم پایه شیمی تجزیه :

– نمونه : قسمتی از ماده که عمل تجزیه تحلیل وآنالیز بر روی آن انجام میگیرد.
-آنالیت : بخشی از نمونه است که بررسی و اندازه گیری کمی بر روی آن انجام میشود.

معرفی روش های کلاسیک :

1.روش های وزن سنجی (Gravimetric Methods)
– روش های تجزیه الکتریکی
– روش های رسوبی
– روش های استخراج یا تبخیر
– روش های فیزیکی متفرقه
2.روش ها حجم سنجی (Volumetric Methods)
– تیتراسیون های خنثی شدن اسید و باز
– تیتراسیون های اکسایش کاهش
– تیتراسیون های رسوبی
– تیتراسیون های کمپلکس سنجی
3.روش های الکترو شیمیایی (Electrochemical Methods)
– اندازه گیری شدت جریان
– اندازه گیری تغیرات ولتاژ
– اندازه گیری رسانایی الکتریکی
– اندازه گیری تغییرات مقاومت
4.روش های طیف سنجی (Spectroscopic Methods)
طیف سنجی جذب مولکولی
– طیف سنجی جذب اتمی
– طیف سنجی نشری
– طیف سنجی فلوئورسانس مولکولی

کاربرد های شیمی تجزیه :

1. کنترل کیفیت محصول:
اکثر صنایع تولیدی باید دارای استاندارد و کیفیت یکنواخت باشند. برای اطمینان از استاندارد و کیفیت مواد اولیه و محصول نهایی تولید شده آزمایش های تجزیه شیمیایی گسترده ای انجام می شود.
2.نمایش و کنترل کننده آلوده کننده ها :
بیشتر محصولات شیمیایی نیاز به کنترل و تعیین آلودگی که ایجاد میکنند دارند مانند حشره کش های آلی کلر دار و فلزات سنگین پسماندهای صنعتی به این منظور به یک روش حساس و صحیح نیاز است که تجزیه شیمیایی این کار را ممکن ساخته است.
3.مطالعات پزشکی و بالینی :
اندازه گیری کمی و کیفی عناصر و ترکیبات مختلف مایعات بدن و خون توسط تجزیه های شیمیایی صورت میگیرد که در آزمایشگاه ها بسیار حائز اهمیت است. مانند اندازه گیری قندخون ، اندازه گیری فلزات سنگین مانند (جیوه ، آرسنیک ، کروم، کادمیم ، نیکل ، سرب ، آلومینیم ، مس ، روی و…)
4.عیار سنجی :
در برخورد با سنگ های خام تعیین ارزش سنگ های قیمتی درون آن در تجارت بسیار مهم است به طوری که تغییرات خیلی کم غلظت در ارزش تجاری آنها تاثیر گذار است. بنابراین انتخاب یک روش دقیق و صحیح تجزیه ای در تعیین عیار این سنگ ها بسیار مهم است.
5. صنایع داروسازی :
شیمی تجزیه یکی از مهمترین عوامل در تولید داروهای مورد نیاز می باشد.
6. اندازه گیری سختی موقت و دائم آب :
در این روش مقدار کلسیم موجود در آب را اندازه میگیرند. اساس اندازه گیری کلسیم در حضور منیزیم پایدار تر بودن کمپلکس(Ca(EDTA نسب به (Mg(EDTA است. EDTA ابتدا با Ca2+ وسپس باMg2+کمپلکس تشکیل میدهد.

هدف شیمیدان های تجزیه :

بسیاری از متخصصان شیمی تجزیه بر روی یک نوع ماده و ابزار تمرکز می کنند. دانشگاهیان تمایل دارند تا برنامه های جدید و اکتشافات و یا روش های جدید تجزیه و تحلیل تمرکز کنند. کشف یک ماده شیمیایی موجود در خون که خطر ابتلا به سرطان را افزایش می دهد، کشفی است که ممکن است یک شیمیدان تجزیه درگیر آن  باشد.
بطور کل شیمی تجزیه یکی از اساسی ترین زیر شاخه های شیمی است که در تمام صنایع قابل مشاهده است و یک شیمیدان تجزیه به دنبال روش های جدید اندازه گیری ، جداسازی و شناسایی مواد شیمیایی است تا بتواند روش های سریع و ارزان برای اندازه گیری آنالیت موجود در نمونه ها و مواد شیمیایی ارائه دهد.