علائم هشدار دهنده ای که نشان میدهد بدن شما دچار کم آبی شده است

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

اصطلاح و عبارت کم آبی ،به نظر میرسد که بسیار جدی است فکرمیکنید که هیچ ارتباطی با شما ندارد

و ممکن است که فقط در کشور های فقیر و یا بلاهای شدید، مانند زمین لرزه اتفاق بیافتد؟درست است؟

خیر! کمبود آب، خیلی رایج تر از آن است که مردم فکر میکنند ؛

75%از آمریکایی ها به طور مداوم دچار کمبود آب هستند و این را نمی دانند

و حتی کمبود آب میتواند برروی بدن و حتی احساساتمان، تاثیر داشته باشد.

دکتر روبرتالی از مرکز clear Lake Regional Medical; گفت60%از بدن ما از آب تشکیل شده است

,75%از آن ، در ماهیچه ها,85%از آن در مغز ما ,وجود دارد،

که شبیه روغن، برای یک ماشین است ؛ وقتی احساس ناخوشایندی میکنید، اغلب ممکن است به علت کمبود آب بدن باشد.

مشکلاتی که با کمبود آب در بدنتان ایجاد می شود

1.خستگی :

شما در کار و در خانه خسته شده اید ,بعد از یک خواب خوب شبانه باز هم احساس خستگی میکنید چرا؟

اگر به طور مداوم احساس خستگی میکنید ،در واقع این احتمال وجود دارد که آب بدن تان کم است ؛ کمبود آب،

باعث میشود که فعالیت آنزیمی بدنتان کاهش یابد و باعث شود، که انرژی کمتری را برای مزایای آینده تولید کند.

2.یبوست مزمن:

احساس نفخ و متورم شدن، میکنید علاوه بر سخت نفس کشیدن هیچ چیز بیرون نمی آید,به جز فیبر زیادی که در

رژیم غذایی خود داشتید در این موارد، باید بررسی کنید که آیا آب به اندازه کافی میخورید یا نه!؟ کمبود آب ،

یکی از دلایل شایع است که باعث یبوست مزمن میشود وقتی آب کافی ننوشید، ضایعات روده شما خشک میشود و

به سختی بیرون می آید.

سردرد یکی از علائم کم آبی بدن

3.سردرد:

همانطور که 85%از آب بدنمان در مغزماست ،وقتی به اندازه کافی آب ننوشیم ,مغزمان فورا واکنش نشان میدهد ؛

مغز ،توسط یک لایه محافظ، از آب احاطه شده است,که کل مغز را شامل میشود . مصرف کم و یا عدم مصرف

آب، باعث میشود که این لایه تبخیر شود این تخلیه باعث میشود که، مغز بر جمجمه فشار وارد کند و منجر به

سردرد دردناک شود.

4. بوی بد دهان:

بزاق دهان دارای خاصیت ضدباکتریایی است اما کمبود آب باعث کاهش بزاق دهان می شود که بوی نامطبوع

دهان را در پی دارد.

تب و لرز یکی از نشانه های کمبود آب در بدن

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

5. تب و لرز:

همیشه داشتن تب و لرز به دلیل وجود ویروس و سرماخوردگی در بدن نیست و کمبود آب هم می تواند دلیل آن باشد

در صورت کم آبی شدید بدن، فرد دچار علایم تب و حتی لرز می شود.

6. هوس خوردن شیرینی:

هنگامی که بدن دچار کم آبی می شود، فعالیت بعضی از اعضای بدن مانند کبد که آب مصرف و گلیکوژن ذخیره

می کند، تحت تأثیر قرار گرفته و به همین دلیل هوس خوردن شیرینی در فرد ایجاد می شود .

توصیه هایی برای رفع کمبود آب بدن

میتوان با مصرف منظم آب ،از این علائم نامطلوب جلوگیری کرد و یا حداقل آنها را کاهش داد در اینجا ،چند نکته درباره نحوه انجام این کار وجود دارد:

  • بلافاصله بعد از بیدار شدن ،2لیوان آب بنوشید ؛ شروع کردن روز خود بااین کار، نه تنها باعث میشود که احساس طراوت کنید، بلکه به هضم شما نیز کمک میکند.
  • یک بطری آب شخصی بخرید و آن را با خود حمل کنید,مطمئن شوید بطری را که ،خریداری میکنید ،حمل آن برایتان راحت باشد.
  • مواد غذایی حاوی آب مانند:خیار,گریپ فروت و البته هندوانه ، که حتما باید برای جلوگیری از کمبود آب در بدن، آنهارا مصرف کنید.
  • برنامه کنترل و ردیابی مصرف آب را دانلود کنید ,تعداد زیادی از اینها در بازار وجود دارد,فقط یکی از آنها را انتخاب کنید.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

استابیلایزر و استابیلایزینگ

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

بخش پایانی

 

1-بررسی روش­های تثبیت در یک پالایشگاه قیرسازی و مقایسه آن­ها با یکدیگر:

 

در این بخش دو روش معمول برای این­گونه برج­ها را در مورد یک پالایشگاه نمونه تولید قیر از نفت­های سنگین مورد بررسی قرار داده و با سه روش جدید پیشنهادی در این مقاله مقایسه شده و روش بهتر برگزیده می­شود. باید دقت شود که دمای مخزن­های بعد از کندانسورها به نحوی انتخاب می­شود که در تمام این حالات مقدار بخار تولیدی به عنوان سوخت گازی (Fuel gas) در تمام موارد تقریبا یکسان باشد:

 

2-1 روش­های متداول

 

الف) محصول بالای برج اتمسفریک بعد از خروج از برج و گذشتن از یک کندانسور به یک مخزن جداسازی وارد می­شود که از پایین این مخزن محصولی به نام نفتا گرفته می­شود. (شکل شماره­ی1) دمای مخزن در حدود 71 درجه سانتی­گراد می­باشد. این طراحی از لحاظ اقتصادی بهترین انتخاب است زیرا با کم­ترین تعداد تجهیزات ممکن محصول نفتا به­دست آمده است. اما از طرف دیگر این طراحی از لحاظ فنی دارای مشکل می­باشد چراکه فشار بخار رِد در این طراحی برابر psi84/19 می­باشد که بر اساس مشخصات موجود در فرآورده­های نفتی این فشار بخار بسیار زیادتر از مقدار بیشینه­ی آن (psi10) می­باشد. و به همین دلیل استفاده از این طراحی توصیه نمی­گردد.

شکل 1- کندانسور یک مرحله­ای بدون تثبیت نفت

 

ب) محصول بالای برج اتمسفریک بعد از خروج از برج از یک کندانسور گذشته و در یک مخزن جداسازی شود. در این طراحی تمام محصول هیدروکربنی جدا شده در این مخزن به برج برمی­گردد. از روی سینی پایینی در برج محصولی گرفته می­شود که پس از گذر از یک برج جانبی و فرآیند عاری سازی
به­عنوان نفتا به سمت مخازن ذخیره سازی فرستاده می­شود. (شکل شماره­ی2)این روش از متداول­ترین و دقیق­ترین روش­ها برای تثبیت مشخصات محصولات می­باشد که به دلایل اقتصادی در این پالایشگاه­ها کمتر مورد توجه قرار دارد. البته معمولا برای تثبیت نفتای اختلاطی (Blending naphtha)  از این روش استفاده می­شود. امکان تثبیت تمامی ترکیبات سبک در این روش وجود ندارد چرا که دمای بالای برج تقطیر بسیار کاهش می­یابد و امکان میعان بخار آب و تشکیل فاز آبی بر روی سینی­های برج نیز وجود دارد. استفاده از یک برج تثبیت کننده در کنار برج تقطیر برای اصلاح فشار بخار معمول­ترین روش می­باشد که البته از نظر اقتصادی روشی پر هزینه است. در این روش تعداد سینی­های برج جانبی و مقدار بار جوش­آور آن می­تواند مقدار دقیق فشار بخار رِد را همان­طور که مورد نیاز است فراهم نماید.

شکل 2- تثبیت نفتا به وسیله­ی جداساز جانبی

 

ج) روش منتخب: در این روش یک مرحله میعان و جداسازی کاملا مشابه با مرحله­ی موجود در روش الف به آن اضافه می­شود. هدف از افزودن این مرحله سنگین­تر کردن محصول نفتا و پایین­تر آوردن فشار بخار رِد در این محصول می­باشد. دما و فشار در هرکدام از این دو مرحله به ترتیب برابر با 80 و 60 درجه سانتی­گراد وbarg  3/1 وbarg  1/1 می­باشد. (شکل شماره­ی3) در این روش فشار بخار رِد در حدود 75/9 می­باشد که در محدوده­ی قابل قبول برای نفتا به شمار می­آید. اگرچه این روش در مقایسه با روش ب نفتای با رنج نقطه­ی جوش بیش­تری می­دهد اما از لحاظ اقتصادی توجیه پذیرتر می­باشد. این روش یک روش کاملا توجیه پذیر فنی-اقتصادی برای حل مشکل تثبیت نفتا می­باشد و روش پیشنهادی برای این واحد می­باشد.

شکل 3- تثبیت نفتا به­وسیله کندانسور دو مرحله­ای

 

د) با توجه به این­که هر کندانسور و مخزنش روی­هم یک مرحله­ی تعادلی حساب می­شوند، به­نظر می­رسد بتوان در روش بالا به­جای استفاده از دو مرحله کندانسور و مخزن از یک سینی تعادلی بیشتر در برج اتمسفریک استفاده شود. و محصول نفتا از روی سینی دوم در برج گرفته شود. (شکل شماره­ی4)

مشکل این روش نیز مشابه مشکل ذکر شده در بند ب سرد شدن بیش از اندازه­ی بالای برج و تشکیل آب بر روی سینی­های برج می­باشد و لذا این روش تیز توصیه نمی­گردد.

شکل 4- تثبیت نفتا با افزودن یک مرحله تعادلی به برج

 

ه) نفتای حاصله از برج در روش الف دارای مواد سبک بیش­تر از معمول می­باشد و به همین دلیل احتیاج به یک جداسازی و تثبیت دارد. در همین راستا می­توان از یک    ظرف جداکننده          دوفازی
 (Flash drum) استفاده کرد و با جداسازی مواد سبک از نفتا آن را تثبیت کرد.(شکل شماره­ی5) در این روش با رساندن فشار در ظرف جداساز به حدودbarg  5/0 می­توان فشار بخار رِد پایین­تر از 10 برای محصول نفتا ایجاد کرد. اما چون گاز بالای این جداساز به طرف کوره خواهد رفت و این گاز فشار مناسب را برای استفاده شدن به­عنوان سوخت کوره را ندارد این روش نیز روش مناسبی برای تثبیت نفتا نمی­باشد. همچنین مقدار گاز تولید شده در این روش بسیار بیش­تر از مقدار گاز مورد نیاز به­عنوان سوخت بوده و در نتیجه اتلاف گازی واحد بسیار زیاد خواهد بود.

شکل 5- تثبیت نفتا با استفاده از flash drum

 

نتیجه:

در پالایشگاه­های خاص مانند پالایشگاه تولید قیر محصولاتی جز قیر محصولات اصلی حساب
نمی­شوند ولی در صورت تمایل به فروش آن­ها باید حداقل استاندارد مشخصات را دارا باشند اما در این استانداردسازی نباید برآوردهای اقتصادی فراموش شود.

با توجه به شرایط فنی- اقتصادی حاکم بر این دست پالایشگاه­ها استفاده از دو مرحله کندانسور و جداکننده برای تثبیت محصول نفتا طی برآوردهای انجام شده در بالا علاوه بر این­که این محصول را از نظر مشخصات در شرایط مطلوب قرار می­دهد، از لحاظ اقتصادی نیز با حذف برج­های جانبی هزینه­های ساخت و نگهداری این قبیل پالایشگاه­ها را به میزان قابل توجهی کاهش می­دهد.[5]

 

منابع:

 

[1]: ویکی پدیا

[2]: کتابچه عملیاتی واحد تثبیت میعانات نفتی پالایشگاه خانگیران (خلیل کمالی)

[3]: بانک مقالات ایران (سیویلیکا) مقاله مهندس احسان آتش روز

[4]: گزارش کارآموزی شرکت نفت و گاز پارس (مرضیه سپهریان مطلق)

[5]: بانک مقالات ایران (ایکمیکا) شرکت ناموران پژوهش و توسعه, احسان اسدی

[6]: باشگاه مهندسان ایران

سوخت فسیلی

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت ومدیریت-گروه شیمی

سوخت فسیلی

سوخت فسیلی

سوخت فسیلی (به انگلیسی: Fossil fuel) به سوخت‌هایی اگفته می‌شود که از سنگواره‌ها (فسیل‌ها) بدست می‌آید. سوخت‌های فسیلی به سه نوع اصلی تقسیم می‌شوند:

زغال سنگ

نفت

گاز طبیعی

این سوخت‌ها دارای یک ویژگی مشترک هستند و آن قدمت بسیار بالای آن‌ها می‌باشد.

آن‌ها صدها میلیون سال قبل و پیش از حضور دایناسورها (و از زمان پلانکتون‌ها) در جهان به وجود آمده‌اند.

بیشتر دانشمندان معتقدند نفت از انباشته شدن بقایای جانوران و گیاهان در کف دریاهای قدیمی به وجود آمده‌است.

این مواد بین لایه‌های رسوبی قرار گرفته و بر اثر گرما و فشار زیاد و تغییرات شیمیایی طیّ میلیون‌ها سال به نفت تبدیل شده‌اند.

شکل‌گیری

انواع سوخت های فسیلی

سوخت‌های فسیلی به‌طور کلی ۳ دسته‌اند:

زغال سنگ

نفت

گاز طبیعی

هر سه دسته چند صد هزار سال قبل حتی پیش از پیدایش دایناسورها شروع به شکل‌گیری کرده‌اند

و به خاطر آن است که به آن‌ها سوخت‌های فسیلی می‌گویند

که در آن زمان زمین پر از باتلاق‌هایی بوده که با درختان عظیم و سرخس‌ها و دیگر گیاهان برگ دار پوشیده بوده وهمان طور که درخت‌ها و گیاهان می‌مردند

در اعماق اقیانوس‌ها غرق و به تدریج دفن می‌شدند و لایه اسفنجی به نام پیت تشکیل می‌شد بعد از گذشت صدها سال پیت با شن و خاک و رس و مواد معدنی دیگر پوشیده شده

و این مواد معدنی به مرور زمان به نوعی صخره رسوبی تبدیل می‌شد همین‌طور که لایه‌های بیشتری روی هم انباشته می‌شود وزنشان هم بیشتر می‌شود

و پیت را تحت فشار قرار می‌دهد لایه پیت آنقدر له و فشرده می‌شود تا آب آن تخلیه می‌شود و بعد از میلیون‌ها سال تبدیل به زغال سنگ نفت و گاز طبیعی می‌شوند

زغال سنگ

زغال سنگ ماده‌ای است سخت سیاه و سنگ مانند که از کربن هیدروژن، اکسیژن و مقداری گوگرد تشکیل شده‌است

امروزه مادهٔ اصلی سازندهٔ زغال سنگ یعنی پیت در بسیاری از کشورهای دنیا یافت می‌شود

و حتی به عنوان منبع انرژی مورد استفاده قرار می‌گیرد.

نفت

نفت یکی دیگر از سوخت‌های فسیلی است که آن هم بیش از سیصد میلیون سال پیش شکل گرفته

بعضی دانشمندان معتقداند که منشأ نفت موجودات آبزی هستند که هر کدام به اندازهٔ نوک یک سوزن هستند

و آن‌ها می‌توانند درست شبیه گیاهان عمل کنند یعنی نور خورشید را به انرژی ذخیره شده در خودشان تبدیل نمایند

این موجودات ریز بعد از مرگ به کف دریا سقوط می‌کنند و کم‌کم در زیر لایه‌های رسوبی و صخره‌ها مدفون می‌شوند

و سنگ‌ها و صخره‌ها به این موجودات ریز فشار می‌آورند و انرژی موجود در بدن آن‌ها نمی‌تواند تخلیه شود

و کربن به مرور زمان تحت گرما و فشار شدید تبدیل به نفت می‌شودسوخت‌های فسیلی قابل تجدید نیستند

گاز طبیعی

گاز طبیعی از هوا سبک‌تر است و به‌طور عمده از گازی به نام متان ساخته شده متان ترکیب شیمیایی ساده‌ای است

که از اتم‌های کربن و هیدروژن ساخته شده و فرمول شیمیایی آن ch_۴ است یک اتم کربن به همراه ۴ اتم هیدروژن است

این گاز شدیداً قابل اشتعال است گاز طبیعی اغلب در نزدیکی منابع زیر زمینی نفت پیدا می‌شود

و از زیر زمین به بالا پمپ شده از طریق لوله‌هایی به مخازن گاز منتقل می‌شود.

سوخت فسیلی نوعی انرژی خورشیدی

سوختهای فسیلی نوعی انرژی ذخیره شده خورشید در قالب ثانویه است.

به‌طوری که با تابش نور خورشید به گیاهان وجانوران و ومدفون شدن آنها طی میلونها سال بدست آمده‌است.

آینده انرژی‌های فسیلی

نحوه تأمین انرژی یکی از دغدغه‌های جهان امروز شده‌است چه کشورهای که تأمین‌کننده مواد خام انرژی هستند

و چه آنهای که با فناوری خود آن را قابل استفاده می‌کنند بسیاری از مردم تمایل دارند

بدانند که تا ۲۰۴۰ جهان در مسیر استفاده از انرژی‌های سبز و قابل بازیابی مثل انرژی باد و خورشید حرکت خواهیم کرد یا خیر،

سازمان چشم‌انداز بین‌المللی انرژی به این گونه فکر می‌کند که این تا سال ۲۰۴۰ جهان بیشتر از سوخت فسیلی مثل زغال سنگ و نفت استفاده می‌کند

و مصرف انرژی جهانی به شدت افزایش خواهد یافت

و درخواست تقاضای انرژی‌های جهانی در کشورهای در حال توسعه بخصوص آسیا افزایش پیدا می‌کند

و چین که به تازگی جایگاه بالاترین مصرف انرژی جهان را دارد که این عنوان قبل از این دراختیار کشور آمریکا بود

دارای بیشترین سهم در رشد مصرف جهانی در سی سال آینده خواهد بود

از مشکلاتی که در آینده گریبان کشورهای توسعه یافته را خواهد گرفت

رشد بی‌رویه انتشار کربن در سال ۲۰۴۰ خواهد بود و این عمل باعث می‌شود

تغییرات و فشارهای جدید در ژئوپلتیک به وجود آید

همچنین این تغییر به پیشرفت فناوری‌های مربوط به انرژی هم منجر می‌شود

که در صورتی که کشورهای تولیدکننده انرژی به این فناوری‌ها دسترسی پیدا نکنند

ضرر بزرگی در بازار انرژی در سال ۲۰۴۰ خواهند خورد از جمله این کشورها می‌توان روسیه را مثال زد که بشدت به درآمدهای حاصل از نفت و گاز خود وابسته است.

جهت اطلاعات بیشتربه سایت پردیس فناوری کیش مراجعه کنید.

اجزای تشکیل دهنده چسب‌ها

پردیس فاوری کیش-طرح مشاوره متخصصین صنعت ومدیریت-گروه شیمی

اجزای تشکیل دهنده چسب‌ها

چسب‌ها

مواد پلیمری

چسب‌ها ، همگی حاوی پلیمر هستند یا پلیمرها در حین سخت شدن چسب‌ها بوسیله واکنش شیمیایی پلیمر شدن افزایشی یا پلیمر شدن تراکمی حاصل می‌شوند. پلیمرها به چسب‌ها قدرت چسبندگی می‌دهند.

می‌توان آنها را به صورت رشته‌هایی از واحدهای شیمیایی همانند که بوسیله پیوند کووالانسی به هم متصل شده‌اند، در نظر گرفت.
پلیمرها در دماهای بالا روان می‌گردند و در حلال‌های مناسب حل می‌گردند.

خاصیت روان شدن آنها در چسب‌های حرارتی و خاصیت حل شوندگی آنها در چسب‌های بر پایه حلال ، یک امر اساسی می‌باشد.

پلیمرهای شبکه‌ای در صورت گرم شدن جریان نمی‌یابند، ممکن است در حلال‌ها متورم گردند، ولی حل نمی‌شوند.

تمامی چسب‌های ساختمانی ، شبکه‌ای هستند، زیرا این مورد خزش (تغییر شکل تحت بار ثابت) از بین می‌برد.

افزودنیهای دیگر

اجزای تشکیل دهنده چسب‌ها بسیاری از چسب‌ها ، علاوه بر مواد پلیمری دارای افزودنیهایی هستند از قبیل:

مواد پایدار کننده در برابر تخریب توسط اکسیژن و UV.

مواد نرم کننده که قابلیت انعظاف را افزایش می‌دهد و دمای تبدیل شیشه‌ای (Tg ) را کاهش می‌دهد.

• مواد پر کننده معدنی که میزان انقباض در سخت شدن را کاهش می‌دهد و خواص روان شدن را قبل از سخت شدن تغییر می‌دهد و خواص مکانیکی نهایی را بهبود می‌بخشد.

• مواد تغلیظ کننده.

• معرف های جفت کننده سیلانی.

تئوریهای چسبندگی

درباره چسبندگی شش تئوری وجود دارد که عبارتند از:

تئوری جذب فیزیکی

جذب فیزیکی شامل نیروهای وان‌دروالسی در بین سطوح می‌باشد که در بر گیرنده جاذبه‌های بین دو قطبی‌های دائم و دو قطبی القایی و نیروهای لاندن می‌باشد.

تئوری جذب شیمیایی

اجزای تشکیل دهنده چسب‌ها تئوری پیوند شیمیایی در مورد چسبندگی ، بر اساس تشکیل پیوندهای کووالانسی ، یونی و هیدروژنی بین سطح می‌باشد.

مدارکی مبنی بر اینکه پیوندهای کووالانسی با عوامل جفت کنندگی سیلانی تشکیل می‌شود،

وجود دارد و ممکن است که چسب‌ها شامل گروههای هیدروکسی یا آمین باشند

که با اتم‌های هیدروژن فعال از قبیل گروههای هیدروکسیل ، اگر چوب یا کاغذ اجزا مورد عمل باشند، پیوند هیدروژنی ایجاد می‌کنند.

تئوری نفوذ

تئوری نفوذ این دیدگاه را مطرح می‌کند که پلیمرها هنگام تماس ممکن است در همدیگر نفوذ کنند.

بنابراین مرز درونی سرانجام برداشته می‌شود و نفوذ پلیمرها در صورتی اتفاق می‌افتد

که زنجیرهای متحرک و سازگار باشند. به عبارت دیگر ، دما باید از دمای تبدیل شیشه‌ای بالاتر رود.

تئوری الکتروستاتیک

تئوری الکتروستاتیک ، از این طرح سرچشمه گرفته است که وقتی دو فلز در تماس با یکدیگر باشند،

الکترون‌ها از یکی به دیگری منتقل می‌شوند و بنابراین یک لایه مضاعف الکتریکی تشکیل می‌گردد که نیروی جذب را نشان می‌دهد.

چون پلیمرها ، نارسانا هستند، مشکل به نظر می‌رسد که این تئوری برای چسب‌ها کاربرد داشته باشد.

تئوری پیوند درونی مکانیکی

اگر سطحی را که می‌خواهیم روی آن چیزی بچسبانیم، دارای سطحی نامنظم باشد

آنگاه ممکن است چسب در ناهمواری‌های سطح ، قبل از سخت شدن داخل شود.

این ایده ، باعث ظهور این تئوری شد که به اتصالات چسب با مواد متخلخل از قبیل چوب و نسوجات بسط داده شد.

مثالی از این قبیل ، عبارت از استفاده از اتو در لایه چسب و در لباس می‌باشد.

لایه چسب‌ها ، حاوی چسب‌های ذوبی هستند که پس از ذوب در پارچه نفوذ می‌کنند.

تئوری لایه مرزی ضعیف

تئوری لایه مرزی ضعیف ، پیشنهاد می‌کند که سطوح تمیز ، پیوندهای قوی‌تری با چسب ایجاد می‌کنند.

اما برخی آلودگیها از قبیل زنگ و روغن یا گریسها ، لایه ای ایجاد می‌کنند که چسبندگی ضعیفی دارد.

همه آلودگیها ، لایه مرزی ضعیف تشکیل نمی‌دهند، زیرا در برخی حالات ، آنها توسط چسب حل خواهند شد.

در این محدوده ، چسب‌های ساختمانی آکریلیک ، برتر از اپوکسیدها هستند و این ، بدلیل توانایی آنها برای حل کردن روغن‌ها و گریس‌ها می‌باشد.

آماده سازی سطح برای چسبندگی

آماده سازی نامناسب یا نادرست سطح ، احتمالا دلیل عمده شکسته شدن اتصالات چسبی می‌باشد.

آماده‌ سازی سطح یک جسم با روش‌های زیر انجام می‌گیرد: روش های سائیدگی ،

استفاده از حلال‌ها ، تخلیه شعله وکرونا ، حک کردن تفلون ، حک کردن فلزات ، آندی کردن فلزات ، استفاده از چند سازه ها.

معایب و مزایای چسب‌ها معایب

1. عموما چسب‌ها بوسیله آب یا بخار آب سست می‌شوند.

2. محدوده رهایی کار آنها کمتر از چسباننده‌های فلزی (مهره ها ،پیچ ها و بست‌های آهنی و غیره) است.

3. چسب‌ها توسط دمای تبدیل شیشه ای (Tg) و تخریب شیمیایی محدود شده‌اند.

مزایا

1. اتصال مواد غیر مشابه و لایه‌های نازک از مواد

2. گسترش بار بر روی یک ناحیه وسیع

3. زیبایی و حالت آئرودینامیک آنها بر روی سطوح خارجی اتصال

4. کاربرد آنها با استفاده از ماشین روبات می‌باشد.

جهت اطلاعات بیشتربه سایت پردیس فناوری کیش مراجعه کنید.

کاهش گرفتگی در بیوفیلترها

کاهش گرفتگی در بیوفیلترها 

پردیس فناوری کیش طرح مشاوره متخصصین صنعت و مدیریت گروه علوم ومهندسی  محیط زیست

روش‌های مختلفی برای کاهش گرفتگی بیولوژیکی در فیلترهای زیستی وجود دارد که از جمله آن‌ها می‌توان به روش‌های:
  • فیزیکی.
  • شیمیایی.
  • بیولوژیکی.
  • توسعه طراحی بیوراکتور .
  • اصلاح پارامترهای عملیاتی .

صافی چکنده زیستی

کنترل بیولوژیکی آلودگی هوا از ظرفیت متابولیسمی میکروارگانیسم‌های تثبیت‌شده استفاده می‌کند و آلاینده‌های فرار موجود در هوا را جذب و تجزیه می‌نماید.

سپس آن‌ها را به زیست‌توده، دی‌اکسیدکربن، آب و ترکیبات یونی تبدیل می‌کند.

معمولاً دو روش بیولوژیکی برای تصفیه هوا در نظر گرفته می‌شود که فیلترهای زیستی و صافی‌های چکنده زیستی هستند.

در فیلترهای زیستی فرایند رطوبت‌زایی انجام می‌شود ولی هیچ مایعی به‌طور پیوسته به بستر اضافه نمی‌شود و جریان از طریق بیوفیلم طبیعی به وجود می‌آید.

در صافی چکنده زیستی، یک محلول از مواد مغذی در راکتور چرخانده می‌شود و رشد میکروبی بر سطح آکنه‌های طبیعی یا سنتزی اتفاق می‌افتد.

لزوم چرخاندن مواد در صافی چکنده زیستی، این سیستم را از بیوفیلتر عادی پیچیده‌تر می‌سازد.

فاز آبی صافی چکنده زیستی نیز فرایند انتقال جرم آلاینده‌ها را نیز تسریع می‌کند و به‌عنوان محیط‌ کشت معلقی است که رشد میکروارگانیسم‌ها و تجزیه مواد به‌راحتی در آن اتفاق می‌افتد.

علیرغم پیچیدگی، صافی چکنده زیستی کارایی بیشتری دارد و بهتر می‌تواند محصولات اسیدی تولید شده را کنترل کند. این سیستم از نظر اقتصادی نیز صرفه بیشتری دارد و در زمان ماندهای کوتاه، مواد فرار بیشتری را حذف می‌کند.

یکی از مشکلات صافی‌های چکنده زیستی در مقایسه با فیلترهای زیستی، گرفتگی بیولوژیکی است که باعث افزایش افت فشار و کانالیزه‌شدن بستر آکنه‌دار می‌شود.

بنابراین افت فشار یکی از معیارهای مناسب گرفتگی بیولوژیکی است.

در عملیات دراز مدت، افت فشار کمتر از 80 میلی‌متر آب باعث عمل‌کردن مناسب فرایند و نگه‌داشتن درصد حذف تا 90 درصد است.

تجمع بیولوژیکی و کنترل آن

یک صافی چکنده زیستی، مواد آلاینده را از طریق روش‌های فیزیکی، شیمیایی و بیولوژیکی حذف می‌کند که نهایتاً آن‌ها به محصولات کم‌خطرتر تبدیل می‌شوند.

روش‌های کنترل آلاینده‌ها توسط صافی‌های چکنده بسیار متنوع است که از جمله آن‌ها می‌توان به روش‌های فیزیکی، شیمیایی، بیولوژیکی، توسعه طراحی و توسعه عملیات اشاره کرد.

روش‌های فیزیکی برای کاهش گرفتگی بیوفیلتر

روش‌های فیزیکی شامل هم‌زدن متناوب، پرکردن و زهکشی آب، شستشوی معکوس، پخش هوا و خشک کردن است. این روش‌ها، زیست‌توده را به روش هیدرولیکی یا مکانیکی از آکنه‌ها جدا کرده و مانع تجمع آن‌ها می‌شود.

اختلاط دستی بستر در مقایسه با شستشوی معکوس تنها، باعث کاهش افت‌فشار به میزان 25 درصد می‌شود زیرا اختلاط باعث سست کردن زیست‌توده می‌شود و بنابراین برای مایع چکنده، حذف آن راحت‌تر می‌شود.

البته این روش فقط برای چند روز مناسب است و بیشتر از آن کارایی ندارد. علاوه بر این، هنگامی که سایز بیوراکتور بزرگتر می‌شود، اختلاط دستی آن نیز دشوارتر می‌شود.

شستشوی معکوس باعث کاهش بازدهی حذف زیست‌توده می‌شود اما تخریب بیولوژیکی را تهدید نمی‌کند. بنابراین بازیابی عملیات در کمتر از 10 ساعت اتفاق می‌افتد.

پر کردن و زهکشی آب، شامل پر کردن بیوراکتور به‌طور کامل با آب یا محلول مواد مغذی و سپس خالی نمودن آن جهت حذف زیست‌توده است.

پخش هوا شامل دمیدن هوا به بیوراکتور پر از آب و سپس خالی نمودن آن می‌باشد.

به‌طور کلی، بازدهی این فرایندها به میزان اغتشاشی بستگی دارد که توسط مایع یا گاز به‌وجود می‌آید. در شار مایع و گاز بالاتر، میزان زیست‌توده بیشتری حذف می‌شود.

علاوه‌بر این، اغتشاش و نیروهای اصطکاکی برای گاز همواره بیشتر از مایع است بنابراین پخش هوا راه‌حل مناسب‌تری از شستشوی معکوس است.

اجرای این فرایندها به اندازه بیوراکتور نیز بستگی دارد.

بیوراکتور بزرگتر، هوا و آب بیشتری نیز لازم دارد. در صافی چکنده‌های کوچک (با حجم بستر 0.002 تا 0.02 مترمکعب)، شستشوی معکوس مناسب‌تر است.

اسمیت و سایرین نشان دادند که با شستشوی معکوس به مدت یک ساعت و تناوب دو بار در هفته و سرعت آب 190 متر بر ساعت می‌توان بازده حذف را در 95 درصد نگه داشت.

نیاز به تجهیزاتی مانند موتور، پمپ و کمپرسور و انرژی زیاد عملاً کاربرد این روش را برای بیوراکتورهای بزرگ محدود می‌سازد.

به‌علاوه، روش‌های فیزیکی نیازمند توقف عملیات و کارگرانی است که بتوانند از عهده کار برآیند. در نتیجه از فرایندهای دیگری مانند فرایندهای شیمیایی و بیولوژیکی باید استفاده کرد.

روش‌های شیمیایی برای کاهش گرفتگی بیوفیلتر

مواد شیمیایی مانند سود سوزآور، نمک طعام و سدیم هیپوکلریت معمولاً برای کنترل تجمع میکروبی در صافی‌های چکنده استفاده می‌شوند.

استفاده از محلول 0.1 مولار سدیم کلرید می‌تواند به مدت 3 ساعت در هر دو هفته پیشنهاد می‌شود. سود سوزآور مواد آلی مانند پروتئین‌ها و قندها را به حالت محلول در می‌آورد و هیدرولیز می‌کند.

بنابراین آن‌ها را از سطحی که به آن چسبیده‌اند جدا می‌کند. شایان ذکر است که سدیم هیدروکسید با غلظت بیش از 0.02 مولار باعث کف‌زایی و رشد قارچ‌ها نیز می‌شود.

مندوزا و همکاران، نشان دادند که شستشوی معکوس با سدیم هیپوکلریت 0.0007 مولار و 0.001 مولار زیست‌توده بیشتری را نسبت به سود سوزآور 0.01 مولار حذف می‌کند.

البته سدیم هیپوکلریت 0.001 مولار اثر میکروب‌کشی نیز دارد و باعث بازدارندگی تخریب آلاینده‌ها توسط میکروارگانیسم‌ها می‌شود.

این ماده تا 10 درصد بازده حذف را کاهش می‌دهد و 10 روز زمان می‌برد تا مجدداً بازده حذف به 90 درصد برسد. به همین خاطر از این ماده کمتر استفاده می‌شود.

به‌علاوه، سدیم کلرید با غلظت بیشتر از 0.35 مولار، اثر بازدارندگی بر رشد میکروبی دارد و به‌طور مثال سدیم کلرید 0.8 مولار کاملاً فرایند تخریب دی‌کلرومتان را در صافی چکنده متوقف می‌کند.

بنابراین این ماده باید در غلظت‌های پایین در حد 0.002 تا 0.137 مولار استفاده شود.

سورفکتانت‌های غیریونی مانند بریج، توین 20 و تریتونیکس 100 پتانسیل خوبی برای کنترل زیست‌توده دارند. سورفکتانت‌ها به‌علت خاصیت آب‌دوستی و آب‌گریزی هم‌زمان، می‌توانند زیست‌تخریب‌پذیری مواد آلی فرار آب‌گریز را افزایش دهند و مقاومت انتقال جرم این مواد را  در محیط‌های آبی کاهش دهند.

در مقایسه با سدیم کلرید و سدیم هیپوکلریت، توین 20 این قابلیت را دارد که نرخ حذف را 70 درصد کاهش دهد و در عین حال، زمان بازیابی فعالیت میکروبی را کوتاه کند.

تزریق ازن برای کنترل زیست‌توده روش دیگری است که مشابه فرایند ازن‌زنی در لجن فعال است.

ازن با غلظت 180 تا 220 میلی‌گرم ازن بر مترمکعب هوا می‌تواند افت فشار را در حد مناسبی نگه دارد و مانع از گرفتگی شود.

به‌ نظر می‌رسد ازن مواد آلی برون‌سلولی را به مواد ساده‌تر تجزیه کرده و نهایتاً آن‌ها را به دی‌اکسیدکربن تبدیل می‌کند.

شایان ذکر است که ازن خود نیز یکی از آلاینده‌های محیط‌ زیست است و باید در استفاده از آن نهایت دقت را مبذول داشت.

از بحث‌های عنوان‌شده نتیجه می‌شود که مواد شیمیایی، کنترل زیست‌توده را از 3 روش انجام می‌دهند.

اولین روش مربوط به اثر شستشو است که باعث تهی‌شدن بیوراکتور از زیست‌توده می‌شود. روش دوم معدنی‌کردن مواد آلی برون‌سلولی است و روش سوم در ارتباط با بهبود بازدارندگی در مقابل رشد است.

روش‌های بیولوژیکی برای کاهش گرفتگی بیوفیلتر

شکارچی‌های میکروبی می‌توانند برای کنترل زیست‌توده به بیوراکتور اضافه شوند.

این شکارچی‌ها از میکروارگانیسم‌ها تغذیه می‌کنند و مانع از تجمع آن‌ها می‌شوند. نماتدها می‌توانند نرخ رشد میکروارگانیسم‌ها را تا 40 درصد پایین بیاورند و نیاز به شستشوی معکوس را در صافی چکنده از بین ببرند.

نماتدها، روتیفرها و سیلیات‌ها در مقابل غلظت وسیعی از آلاینده‌ها مقاوم هستند و می‌توانند برای کنترل رشد میکروارگانیسم‌ها مورد استفاده قرار بگیرند.

حضور پروتوزوئا و متازوئا نیز به نگه‌داشتن افت فشار در حد 5 میلی‌متر آب بر متر کمک می‌کند و از این طریق از گرفتگی بستر جلوگیری می‌کند.

حشره لارو نیز می‌تواند مقدار زیست‌توده را در صافی چکنده کنترل کند.

این حشرات نه‌ تنها زیست‌توده را مصرف می‌کنند بلکه آن را سست می‌کنند تا به‌ آسانی توسط محیط آبی کنده شود و این کار را در مدت چند روز انجام می‌دهد.

افزودن کرم ریز شکارچی به سیستم فیلتر زیستی، کارایی سیستم را افزایش می‌دهد و باعث تبدیل بیشتر مواد آلی به دی‌اکسیدکربن، شکار بیشتر میکروارگانیسم‌ها و کاهش گرفتگی می‌شود.

البته حشرات لارو می‌توانند با مصرف بستر فیلتر و تولید مدفوعی چسبنده، مجدداً موجب گرفتگی و کانالیزه شدن بشوند.

انتخاب نوع میکروارگانیسم نیز تأثیر مستقیمی بر گرفتگی صافی چکنده دارد. به‌طور مثال صافی چکنده حاوی قارچ زودتر از صافی چکنده حاوی باکتری با گرفتگی مواجه می‌شود.

هم‌چنین کرم‌های ریز در صافی چکنده حاوی باکتری یافت می‌شوند اما در صافی چکنده حاوی قارچ یافت نمی‌شوند.

بنابراین صافی چکنده حاوی باکتری حدوداً 30 درصد نرخ حذف بالاتری نسبت به صافی چکنده حاوی قارچ دارد. از مزایای بیوراکتور حاوی قارچ می‌توان به مقاومت در برابر پی‌هاش پایین و رطوبت اشاره کرد.

طراحی ابتکاری بیوراکتور برای کاهش گرفتگی بیوفیلتر

طراحی‌های متفاوتی برای بیوراکتورها وجود دارد اما در این نوشتار به مواردی پرداخته می‌شود که ویژگی کنترل زیست‌توده را دارند.

این طراحی‌ها مقدار زیست‌توده را از طریق جلوگیری از گرفتگی با حذف آکنه‌ها و یا توسعه توزیع یکنواخت زیست‌توده، اختلاط آکنه‌ها و بهبود پیکربندی و هندسه راکتورها کنترل می‌کنند.

در بیوراکتور کف-امولسیون از میکروارگانیسم‌های بسیار فعال در تخریب آلاینده‌ها استفاده می‌شود و با معلق‌کردن میکروارگانیسم‌ها در کف (فوم) متحرک، به جای تثبیت آن‌ها بر آکنه، از گرفتگی جلوگیری می‌شود.

کف‌ها با افزودن مواد آلی مخلوط‌نشدنی با سوسپانسیون میکروبی در فاز آبی به وجود می‌آیند. شهنا و همکاران به‌ جای امولسیون آلی از کف سورفکتانت‌ها استفاده کردند تا از مشکلات تخلیه و دفع آن جلوگیری شود.

کف سورفکتانت‌ها می‌تواند غلظت‌های تا 1.6 گرم برمترمکعب از بتکس (بنزن، تولوئن و زایلن) را کنترل کند.

هم‌چنین میزان حذف بتکس توسط این سیستم 420 گرم بر مترمکعب بر ساعت است که از مقدار سنتی آن در صافی‌های چکنده (61 و 98 و 240 گرم برمترمکعب برساعت) بسیار بیشتر است.

البته استفاده از این سیستم با چالش‌هایی نیز روبرو است که از جمله آن‌ها می‌توان به محدودیت مواد مغذی، نوسانات بارگذاری و غیرفعال‌شدن سلول‌ها اشاره کرد.

یکی دیگر از بیوراکتورهایی که مشکل گرفتگی را تا حدودی رفع می‌کند بیوفیلتر معلق است که از آکنه‌هایی با دانسیته کم تشکیل شده است.

ظرفیت حذف این بیوراکتور بسیار چشم‌گیر است چرا که از تجمع میکروبی، گرفتگی و کانالیزه‌شدن جریان جلوگیری می‌کند.

جریان گازهای آلوده باعث اختلاط آکنه‌ها می‌شود و آن‌ها را در محیط‌کشت به‌صورت معلق نگه می‌دارد.

لجن اضافی در انتهای بیوراکتور ته‌نشین می‌شود و به‌طور متناوب تخلیه می‌شود. این بیوراکتور سیستم کنترل پی‌هاش و افزودن مستمر مواد مغذی را لازم دارد.

از آنجا که این سیستم شباهت زیادی به بیوراکتور بستر متحرک دارد، سرعت گاز زیادی لازم است تا آکنه‌ها را در حالت معلق نگه دارد.

پمپی که در این فرایند برای تأمین گاز لازم است انرژی زیادی می‌خواهد.

برای توزیع یکنواخت زیست‌توده می‌توان از دیسک‌های بیولوژیکی چرخان استفاده کرد. این سیستم برای تصفیه فاضلاب نیز استفاده می‌شود و تلفیقی از بیوفیلتر چرخان و سیستم لجن فعال است.

البته برخلاف سیستم لجن فعال، در این راکتور لجن ته‌نشین شده برگشت داده نمی‌شود و هر هفته لجن جدیدی به سیستم اضافه می‌شود.

با استفاده از بنزن به‌عنوان نمونه آلاینده، دیسک بیولوژیکی چرخان نرخ حذفی معادل 45 گرم بر مترمکعب بر ساعت از خود نشان می‌دهد که 30 درصد از صافی چکنده مشابه کمتر است.

بنابر مزایای اختلاط که در بخش‌های قبلی بحث شد، می‌توان از صافی چکنده دارای همزن برای حذف آلاینده‌هایی مانند استایرن استفاده کرد.

این صافی چکنده هنگامی که بازده حذف 40 درصد است و افت فشار به 100 میلی‌متر آب به متر می‌رسد، بستر را به مدت 10 دقیقه با سرعت 10 دور بر دقیقه مخلوط می‌کند.

حذف نهایی زیست‌توده اضافی، افت فشار را تا 98 درصد کاهش می‌دهد اما حدوداً 8 روز طول می‌کشد تا بازده حذف به 90 درصد برسد.

ریو و همکاران فعالیت خود را بر همزدن دستی صافی چکنده ادامه دادند و توانستند یک صافی چکنده بدون گرفتگی تولید کنند.

در این نوع صافی، هنگامی که افت فشار بیشتر از 50 میلی‌متر آب به متر می‌رسد، تجمع میکروبی توسط هم‌زدن کنترل می‌شود.

از آنجا که همزن به‌طور اتوماتیک کنترل می‌شود نیازی برای خاموش کردن بیوراکتور وجود ندارد و بنابراین از پیچیدگی فرایند کاسته می‌شود.

به‌طور کلی، این روش نوین باعث کاهش گرفتگی فیلتر زیستی حتی با وجود نوسانات بار آلاینده‌ها به مدت 125 روز می‌شود. غلظت زیست‌توده بین 1.1 تا 2 گرم زیست‌توده بر گرم آکنه نگه‌داری می‌شود تا افت فشار کمتر از مقدار مقرر قرار گیرد.

یانگ و آلن از آکنه‌ها با اندازه‌های مختلف استفاده کردند، به‌طوری‌که آکنه‌های بزرگتر در قسمت ورودی گاز و آکنه‌های کوچکتر در قسمت خروجی قرار داشتند.

پیشرفت بعدی آن‌ها استفاده از فیلتر زیستی مخروطی و تغییر سطح جانبی در تماس با جریان گاز بود.

با توسعه مدلی برای افت فشار، تخمین زده می‌شود که این طراحی‌ حدود 30 تا 50 درصد افت فشار را کاهش دهد. افت فشار در این فرایند ممکن است زیرا باعث ایجاد توزیعی یکنواخت از فعالیت میکروبی می‌شود.

به‌طور کلی تغییراتی که در صافی‌های چکنده اتفاق می‌افتد، نیاز به خاموش کردن سیستم را در طول حذف زیست‌توده کاهش می‌دهد و باعث طولانی‌تر شدن زمان عملیات پیوسته می‌شود.

شکی نیست که این پیشرفت‌ها باعث بهبود عملیات سیستم‌های بیولوژیکی تصفیه هوا می‌شوند. البته اتصال نواحی متحرک باعث پیچیدگی ساخت‌وساز و افزایش نیاز به انرژی می‌شود.

بهبود پارامترهای عملیاتی برای کاهش گرفتگی بیوفیلتر

محدودیت مواد مغذی یکی از روش‌های شیمیایی کنترل زیست‌توده است.

محدود ساختن یکی از منابع مواد مغذی ماکرو مانند نیتروژن، پتاسیم و فسفر رشد میکروارگانیسم‌ها و بازده حذف را کاهش می‌دهد.

هنگامی که منبع کربن قطع شود اصطلاحاً گفته می‌شود قحطی رخ داده است.

علاوه بر بحث مقدار مواد مغذی، ساختاری که این مواد در آن حضور دارند نیز می‌تواند عاملی تعیین‌کننده باشد.

به‌طور مثال استفاده از نیتروژن به‌صورت نیترات به جای نیتروژن آمونیاکی، میزان حذف را 70 درصد افزایش می‌دهد و بازده زیست‌توده را 40 درصد کاهش می‌دهد.

ظرفیت حذف صافی چکنده با نیتروژن آمونیاکی و تجمع میکروبی نیز در مقایسه با حالتی که از نیترات استفاده می‌شود بیشتر است چرا که آمونیاک به‌راحتی در بدن زیست‌توده تجمع می‌یابد.

قحطی درازمدت باعث غیرفعال‌ شدن مسیرهای متابولیکی شده و نهایتاً به مرگ میکروارگانیسم‌ها منجر می‌شود.

سپس میکروارگانیسم‌های مرده با فاز آبی شستشو می‌شوند و از صافی چکنده خارج می‌شوند.

برای قحطی 3 و 7 هفته‌ای، معمولاً یک هفته طول می‌کشد تا شرایط عادی و بازده حذف 80 تا 90 درصد مجدداً اتفاق بیفتد.

اگر آب به اندازه کافی وجود داشته باشد، میکروارگانیسم‌ها توسط مسیرهای متابولیسمی درونی به زندگی خود ادامه می‌دهند.

هنگامی که میکروارگانیسم‌ها به مقدار اضافی وجود دارند این روش برای کنترل جمعیت میکروبی بسیار مناسب است اما در مرحله استارتاپ کارایی ندارد زیرا باعث به تأخیر افتادن ایجاد بیوفیلم می‌شود.

اگرچه خاموش کردن سیستم‌ها و دوره‌های عدم استفاده در بسیاری از صنایع متداول است اما تکیه بر این روش برای کنترل جمعیت میکروبی نیازمند عملیات جدیدی است.

دمای عملیاتی بالا گزینه دیگری برای کنترل زیست‌توده است. استفاده از دمای 40 تا 70 درجه سانتی‌گراد به‌وسیله سوزاندن جریان گاز می‌تواند مقدار زیست‌توده را در صافی چکنده کنترل کند.

صافی چکنده ترموفیلیک معمولاً برای مصارف صنعتی که گاز با دمای بالا در دسترس است، استفاده می‌شود.

صافی چکنده ترموفیلیک که در دمای 55 درجه سانتی‌گراد عمل می‌کند نسبت به مزوفیلیک (دمای 20 تا 30 درجه سانتی‌گراد) حدود 30 درصد تجمع کمتری دارد اما ظرفیت حذف آن نیز پایین‌تر است ولی عملیات نیز به‌صورت مداوم و پایا انجام می‌شود.

در محدوده دمایی ترموفیلیک، گاز گرم‌تر باعث خشک‌شدن بستر می‌شود و در نتیجه زیست‌توده راحت‌تر از سطح بستر جدا می‌شود و با جریان مایع از بیوراکتور خارج می‌شود.

علاوه بر این، در دماهای بالاتر میکروارگانیسم‌های متنوع‌تری فعالیت می‌کنند و نرخ تجزیه مواد آلی به دی‌اکسیدکربن بالاتر است.

به‌طور مشابه، صافی چکنده ترموفیلیک ترکیبات آب‌گریز را آسان‌تر تجزیه می‌کند و نیاز به کاهش دمای گاز ورودی برای مزوفیلیک‌ها را از بین می‌برد و از این طریق منجر به کاهش هزینه عملیاتی و سرمایه‌گذاری می‌شود.

از بحث‌های مطرح شده نتیجه می‌شود که بهترین روش برای کنترل زیست‌توده، کاهش تولید آن است که از حذف زیست‌توده بهتر است.

حذف زیست‌توده اضافی توسط روش‌های فیزیکی به کارگر نیاز دارد درحالی‌که طراحی ابتکاری بیوراکتور نیازمند جایگزینی کامل صافی چکنده‌های ساده است.

جلوگیری از تولید زیست‌توده توسط روش‌های زیستی و شیمیایی راه‌حل مناسبی به نظرمی‌رسد. ارزیابی هوشمندانه و بررسی آثار محیط‌زیستی نیز باید انجام شود تا نتیجه مناسبی برای به‌کارگیری یک سیستم به دست بیاید.

گیاهان مفید برای بیماران دیابتی

پردیس فناوری کیش-طرح مشاوره متخصصین صنعت ومدیریت-گروه شیمی

گیاهان مفید برای بیماران دیابتی

گیاهان مفید برای بیماران دیابتی

امروزه دیابت یکی از شایع ترین بیماری ها در جهان است که نیمی از جمعیت جهان به آن مبتلا هستند.

به گزارش سایت «Readers Digest» در بیماری دیابت به علت ترشح ناکافی انسولین که

یکی از مهم ترین هورمون های بدن به حساب می آید، میزان قند خون از حد طبیعی خارج می شود.

این بیماری با ایجاد مشکلات و اختلالاتی مانند بیماری قلبی عروقی، حمله قلبی،

آسیب به اعصاب و قانقاریا می تواند زندگی فرد را به خطر اندازد.

بنابراین برای داشتن زندگی بهتر و سالم تر، باید از بدن خود خوب مراقبت و برای پیش گیری

از این بیماری مهلک میزان متعادل قند خون را حفظ کنیم.از زمان قدیم، گیاهان متفاوتی

برای درمان این بیماری به کار می رفت که از نظر علمی نیز تاثیر آن ها ثابت شده است.

آلوئه ورا؛ آلوئه ورا به عنوان گیاه شفابخش شناخته شده است.

شیره خشک شده و ژل که از قسمت داخل برگ ها به دست می آید در کاهش میزان گلوکز خون بسیار موثر است.

● دارچین؛ این ادویه دسترسی سلول های چربی را به انسولین آسان تر می کند

و تبدیل گلوکز به انرژی را چند برابر افزایش می دهد. علاوه بر آن دارچین مانع ایجاد رادیکال های آزادخطرناک می شود.

● پیاز؛ این گیاه تاثیر قابل ملاحظه ای در کاهش قند خون دارد.

پیاز روی سوخت و ساز گلوکز در کبد تاثیر می گذارد و باعث افزایش ترشح انسولین می شود.

● سیر؛ این گیاه بهترین درمان برای کاهش مستقیم قند خون، بازسازی

سلول های لوزالمعده و تحرک آن برای تولید انسولین به حساب می آید.

● برگ های انبه؛ برگ های انبه درمان موثری برای بیماری دیابت است.

کافی است برگ های انبه را به مدت ۲۴ ساعت در آب خیس کنید. سپس برگ ها را بفشارید و آب به دست آمده

را بخورید یا برگ های انبه را خشک و سپس آسیاب کنید

و روزی ۲ بار با آب مصرف کنید. این ۲ روش عوارض دیابت را از بین می برد.

قره قاط؛ این میوه اختلالات پرخطر دیابت مانند آسیب های چشمی و آب مروارید را کاهش می دهد.

جینکو بیلوبا؛ عصاره این گیاه برای پیش گیری و درمان مراحل اولیه ناراحتی عصبی ناشی از دیابت موثر است.

● شنبلیله؛ شنبلیله یکی از پرمصرف ترین گیاهان برای کنترل بیماری دیابت به حساب می آید.

شنبلیله مقاومت انسولین را در بدن کاهش می دهد و با افزایش تعداد گیرنده های انسولین در گلبول های قرمز،

میزان قند خون را کنترل می کند. این گیاه با به کارگیری گلوکز در بافت های پیرامونی، میزان گلوکز خون را کاهش می دهد.

کافی است دانه های شنبلیله را یک شب کامل در یک لیوان آب خیس کنید

و روز بعد آب آن را بخورید و دانه ها را بجوید.

اسفرزه؛ این گیاه خاصیت کاهش دهنده کلسترول و قند خون را داراست.

فیبر بالای موجود در آن، یبوست را از بین می برد و با کاهش کلسترول، خطر بیماری قلبی را نیز کاهش می دهد.

● ریحان؛ این گیاه، روند ترشح انسولین را آسان تر می کند.

به طور عمومی هر گیاهی که لوزالمعده و کبد را تقویت کند،

در درمان دیابت مفید است. اما اگر دیابتی هستید و دارویی برای کنترل میزان خون مصرف می کنید،

بهتر است با پزشک مشورت و به طور منظم میزان قند خون خود را کنترل کنید

تا با افت ناگهانی قند خون مواجه نشوید.

جهت اطلاعات بیشتربه سایت پردیس فناوری کیش مراجعه کنید.

انواع برج های جداسازی

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مهندسی شیمی

انواع برج های جداسازی:

یکی از مهم ترین تجهیزات فرآیندی که در صنایع مربوط به نفت و گاز وجود دارد، برج های جداسازی می باشند. کار این تجهیزات، جداسازی اجزای موجود در یک ترکیب می باشد که هر کدام از این اجزاء می توانند ارزش بسیار بالایی در مقایسه با ترکیب اولیه داشته باشند. در این قسمت به معرفی انواع برج های جداسازی می پردازیم. جداسازی برای مخلوط های همگن و غیر همگن صورت می گیرد.

 اگر مخلوطی که جداسازی می شود همگن باشد، جداسازی می تواند تنها با افزودن و یا ایجاد فاز دیگری درسیستم انجام شود. به عنوان مثال در جداسازی یک مخلوط گازی، فاز دیگر می تواند به وسیله چگالش جزئی انجام شود. در صورتیکه یک مخلوط ناهمگن داشته باشیم، جداسازی می تواند به طور فیزیکی و با استفاده از تفاوت دانسیته بین فازها انجام گیرد.

اساس کار برج ها افزایش سطح تماس بین فازها می باشد که این افزایش ممکن است توسط سینی یا پرکن تامین شود. برج های جداسازی به سه روش پیوسته، نیمه پیوسته و غیرپیوسته عمل می کنند. جداسازی فازی درون برج ها به صورت فازهای جزئی زیر انجام می گیرند:

بخار-مایع، مایع-مایع، جامد-مایع، جامد-گاز و جامد-جامد.

دستگاه های بکار رفته در عملیات گاز- مایع به دو دسته زیر تقسیم می شوند:

    ۱- دستگاه هایی که در آن ها گاز پراکنده می شود:

مخازنی که در آن ها حباب گاز ایجاد می شود، مخزن مجهز به همزن و انواع برج های سینی دار را می توان در این دسته قرار داد. در این دستگاه ها فاز گاز به صورت حباب یا کف در فاز مایع پراکنده می شوند.

    ۲- دستگاه هایی که در آن ها فاز مایع پراکنده می شود:

این گروه شامل دستگاه هایی می شود که در آن ها مایع به صورت یک فیلم نازک و یا به صورت قطره ای درآمده و در فاز گاز پراکنده می شود. در این میان برج های دیواره مرطوب، برج های پاششی و ستون های پر شده را می توان نام برد.

معمولاً برج های جداسازی، بر اساس عملیات انتقال جرمی که بین فازها انجام می شود، به صورت زیر تقسیم بندی می شوند.

الف – برج های تقطیر

ب – برج های استخراج

ج – برج های جذب و دفع

برج های تقطیر(Distillation Columns):

تقطیر از جمله مهم ترین فرآیندهای جداسازی است که اساس جداسازی در آن اختلاف نقطه جوش اجزاء مخلوط می باشد.فرآیند تقطیر از روش های مستقیم جداسازی به شمار می رود. عمل تقطیر با استفاده از حرارت دادن به یک مخلوط و سرد کردن بخارات حاصل انجام می شود. به طور کلی یک برج تقطیر شامل چهار بخش زیر می باشد:

  1. بدنه اصلی برج (Tower)
  2. سیستم جوشاننده یا ریبویلر (Reboiler)
  3. سیستم میعان کننده یا کندانسور (Condenser)
  4. تجهیزات جانبی از جمله سیستم های کنترلی، مبدل های حرارتی میانی، پمپ ها، مخازن و…

معرفی انواع برج های جداسازی

به طور کلی برج هایی که در صنعت برای تقطیر به کار می روند، به صورت ۲ نوع زیر می باشند:

  1. برج های سینی دار (Tray Towers)
  2. برج های پر شده (Packed Towers)

برج های تقطیر سینی دار (Tray Distillation Towers):

برج های سینی دار مهم ترین نوع برج هایی هستند که در مراکز مهم صنعتی مانند پالایشگاه ها از آنها استفاده می شود.داخل این برج ها به فواصل معینی صفحه های فلزی سوراخ داری قرار داده شده است که به آن ها سینی گفته می شود. این برج ها به ارتفاع های مختلفی ساخته می شود که ممکن است از چند متر تا بیش از ۵۰ متر متغیر باشد. قطر این برج ها نیز ممکن است تا بیش از ۵ متر هم در نظر گرفته شود. برج های تقطیر می توانند سیستم ریبویلر و کندانسور داشته باشند و یا نداشته باشند.

درون برج، جریان های مایع و گاز بصورت غیر همسو روی این سینی ها با یکدیگر در تماس قرار می گیرند و انتقال جرم روی سینی رخ می دهد. جریان مایع به شکل افقی روی سینی حرکت کرده و توسط ناودانی هایی به سمت پایین (سینی بعد) می ریزد. جریان گاز نیز از پایین و توسط منافذ روی سینی، به سمت بالا حرکت می کند و به شکل حباب در مایع پخش می شود.سپس حباب ها از مایع جدا شده و به سمت بالا حرکت می کنند. ریبویلر حرارت لازم برای بخار شدن مایع در پایین برج را فراهم می کند و کنداسور بخار خروجی از بالای برج را مایع می کند.

مهم ترین پارامتر در طراحی یک برج تقطیر، تعداد مراحل تئوری آن می باشد. بر اساس آن تعداد سینی و همچنین ارتفاع برج مشخص می گردد. از دیگر پارامترهای مهم یک برج سینی دار می توان به فاصله سینی ها، عمق مایع روی سینی ها، نوع منافذ روی سینی، پروفایل فشار و دمای برج، سینی خوراک و… اشاره کرد. برج های سینی دار را بر اساس نوع منافذ روی سینی می توان به ۳ نوع زیر تقسیم کرد:

    ۱- سینی های غربالی (Sieve Tray):

سینی های غربالی، صفحات مشبک می باشند که بخارات از منافذ آن عبور کرده و به صورت حباب هایی وارد مایع روی سینی می شوند. این سینی ها نسبت به دو نوع دیگر بسیار ارزان بوده و ظرفیت بالاتری دارند. مزیت دیگر این سینی ها افت فشار کم آنها است که مجموعاً باعث شده که در طراحی ها در صورتی که مشکل عمده ای در میان نباشد به عنوان اولین انتخاب در نظر گرفته شود.

معرفی انواع برج های جداسازی

تصویر سمت راست سینی یک پاس گذر و تصویر سمت چپ سینی دو پاس گذر می باشد

   ۲- سینی دریچه ای (Valve Tray):

این سینی ها نیز صفحات سوراخ دار می باشند که هر سوراخ مجهز به یک صفحه کوچک (دیسک) متحرک می باشد. سوراخ های سینی می تواند مدور یا مستطیل باشد. در دبی کم بخار، صفحه بر روی سوراخ مستقر شده و آن را به نحوی می پوشاند که مایع چکه نکند. دریچه منافذ در ۲ نوع ثابت و متحرک ساخته می شوند. با افزایش دبی بخار دریچه در امتداد قائم به طرف بالا حرکت کرده و مجرا را برای عبور بخار باز می کند. این سینی ها قیمت مناسبی دارند و نسبت به تغییرات دبی بخار انعطاف پذیر می باشند.

معرفی انواع برج های جداسازی

تصویر سمت راست دارای دریچه های متحرک و تصویر سمت چپ دارای دریچه های ثابت می باشد

معرفی انواع برج های جداسازی

تصویر فوق نحوه عملکرد سینی دریچه ای را نشان می دهد

    ۳- سینی های فنجانی (Bubble Cap Tray):

این سینی متشکل از یک صفحه مشبک است که روی هر سوراخ یک لوله هدایت گاز به بالا و یک فنجان وارونه روی آن وجود دارد. در سینی فنجانی معمولاً لایه ای از مایع بر روی سینی باقی می ماند و گاز خروجی از زیر فنجان باید از داخل این لایه عبور کند. شکاف های روی هر فنجان، مستطیلی با عرض ۰٫۳ تا ۰٫۹۵cm و طول ۱٫۳ تا ۳٫۸cm می باشد. از مزایای این سینی ها این است که اولاً نشتی مایع از طریق سوراخ های سینی وجود ندارد ، همچنین در دبی های بسیار کم گاز به خوبی عمل می کند.

معرفی انواع برج های جداسازی

تصاویر بالا شکل سینی های فنجانی را نشان می دهد

معرفی انواع برج های جداسازی

تصویر فوق نحوه عملکرد سینی فنجانی را نشان می دهد

برج های تقطیر پر شده (Packed Bed Distillation Tower):

طرز کار برج های پر شده به همان صورت برج های سینی دار می باشد، با این تفاوت که در برج های پر شده سینی وجود ندارد بلکه تمام برج از اجسامی با جنس و شکل معین پر شده است که به این اجسام پرکن (Packing) می گویند. پرکن ها عموماً بر دو نوع منظم و نامنظم تقسیم بندی می شوند؛ پرکن های منظم در برخی موارد حتی بر سینی ها نیز برتری دارند. 

در این برج ها نیز همانند برج های سینی دار مایع از بالا و گاز از پایین جریان پیدا می کند. توزیع مایع در برج های پرکن حائز اهمیت بسیاری است زیرا توزیع ناهمسان موجب خشک ماندن برخی قسمت های بستر و در نتیجه کاهش راندمان تماس گاز -مایع می شود. جهت نگه داشتن بستر پرکن یک سینی زیرین و برای جلوگیری از انبساط بستر یک سینی بالایی در برج های پرکن تعبیه می شود.معرفی انواع برج های جداسازیچند نمونه از پرکن های منظممعرفی انواع برج های جداسازیچند نمونه از پرکن های نامنظم پرکن های منظم دارای برتری های زیر نسبت به برج های سینی دار می باشد:

    1. افت فشار بسیار کمتر

پرکن ها باید خصوصیات زیر را داشته باشند:

    1. سطح تماس زیادی بین مایع و گاز ایجاد کند

برج های استخراج (Extracting Towers):

در استخراج مایع- مایع دو فاز را باید در تماس با یکدیگر قرار داد تا عمل انتقال جزء مورد نظر انجام شده و سپس جداسازی صورت گیرد. در استخراج، چون چگالی دو فاز نزدیک به یکدیگر می باشد، برای اختلاط و جداسازی نیروی محرکه کمی در دسترس است. در این حالت عمل مخلوط کردن دو فاز مشکل و جداسازی آن ها مشکل تر است. ویسکوزیته هر دو فاز نسبتاً بالا و سرعت حرکت مواد در بیشتر قسمت های دستگاه های استخراج پایین است. 

در نتیجه در بسیاری از دستگاه های استخراج، نیروی محرکه لازم برای اختلاط و جداسازی با روش های مکانیکی تامین می شود. محصول استخراج ممکن است سبک تر یا سنگین تر از محصول پسماند باشد در نتیجه محصول استخراج در بعضی از دستگاه ها از قسمت فوقانی و در بعضی دیگر از قسمت تحتانی دستگاه خارج می شود. مهم ترین دستگاه ها و برج هایی که در استخراج بکار برده می شوند عبارتند از :

۱- دستگاه های مخلوط کننده- ته نشین کننده (Mixer-Settlers):

این دستگاه جزء متداول ترین دستگاه های استخراج محسوب می شود و عملکرد بسیار ساده ای دارد. راندمان مرحله ای آن ۷۵ تا ۹۵% می باشد. این دستگاه از یک بخش برای اختلاط دو فاز و بخش دیگری برای جداسازی آن دو تشکیل شده است. میکسر باید اختلاط یکنواختی را ایجاد کند. این اختلاط می تواند با تکان دادن کل مخزن، رها کردن حباب درون محتویات مخزن و یا جریان دادن محتویات از پایین به بالای مخزن صورت گیرد. ستلر به شکل مخزنی می باشد که به دو فاز مخلوط شده، اجازه ته نشینی می دهد.معرفی انواع برج های جداسازینحوه عملکرد دستگاه Mixer-Settler

۲- ستون های ضربه ای (Pulsed Columns):

در این دستگاه پالسی به صورت هیدرولیکی به مایع داخل ستون اعمال می شود. چون این استخراج کننده ها هیچ قسمت متحرکی ندارند خیلی عملی هستند. صفحات سوراخ دار، طوری سوراخ شده اند که جریان عادی در آن ها رخ نمی دهد. عمل نوسان که روی مایعات انجام می شود، مایعات سبک و سنگین را از سوراخ ها عبور می دهد. ستون های پر شده نیز می توانند به صورت ضربه ای عمل کنند. در این دستگاه شدت انتقال جرم در برابر افزایش هزینه انرژی، افزایش می یابد.

معرفی انواع برج های جداسازی

اجزای ستون ضربه ای

۳-برج های استخراج پاششی و پرکن (Spray and Packed Extracting Towers):

در برج پاششی مایع سبکتر از پایین وارد و با عبور از قسمتی شبیه به آب پاش به صورت قطرات کوچک پخش می شود. قطرات مایع سبک از داخل توده مایع سنگین که به طور پیوسته به طرف پایین حرکت می کند عبور کرده و به طرف بالا می روند. این قطرات در حین بالا رفتن انتقال جرم را انجام داده و بالای برج به هم ملحق می شوند. در روش گفته شده فاز سبک پراکنده و فاز سنگین پیوسته است.

 عکس این حالت نیز ممکن است، بدین صورت که فاز سنگین در قسمت فوقانی ستون در فاز سبک پاشیده می شود و به صورت پراکنده از داخل جریان پیوسته مایع سبک، به طرف پایین حرکت کند. به منظور ایجاد سطح تماس بیشتر فاز دارای شدت جریان بیشتر را پراکنده میکنند. اگر اختلاف ویسکوزیته بالا باشد، فاز دارای ویسکوزیته بالاتر را برای افزایش سرعت ته نشینی پراکنده می کنند.

برج های پاششی به علت اختلاط محوری، راندمان کمی دارند. و به سختی می توان از آن یک واحد تئوری به دست آورد.

معرفی انواع برج های جداسازی

انواع برج های استخراج پاششی- تصویر سمت راست سینی دار و تصویر وسط پر شده می باشد

۴- برج های دارای سینی مشبک(Sieve Extracting Tower):

طرز کار این نوع از برج ها به صورت برج های پاششی است. با این تفاوت که در داخل این برج ها به فاصله های معین سینی های سوراخداری قرار داده شده است. در این سینی قطر سوراخ ها ۱٫۵ تا ۴٫۵mm و فاصله آن ها از یکدیگر ۱٫۵ تا ۶mm است. در این سینی ها معمولاً مایع سبک فاز پراکنده را تشکیل می دهد، به طوری که در زیر هر سینی لایه ای از مایع تشکیل می گردد که به درون مایع سنگین پاشیده می شود.

۵-برج های استخراج صفحه ای (Plate Towers):

این گونه از برج های استخراج صفحه هایی افقی دارند که مایع سنگین از بالای هر صفحه جریان یافته و از لبه به داخل فاز سنگین و به طرف بالا پاشیده می شود. در این نوع از برج ها فاصله بین صفحه ها در حدود ۱۰۰ تا ۱۵۰ میلی متر است. در تصویر زیر عملکرد برج استخراج صفحه ای را مشاهده کنید.

برج استخراج صفحه ای (Plate Towers)۶- برج های استخراج همزن دار (Baffle Towers):

در این نوع از برج های استخراج، انرژی مکانیکی لازم را همزن های داخلی نصب شده روی میله دوار مرکزی تأمین می سازد. دیسک های مسطح مایعات را پراکنده و به طرف دیواره برج می رانند. در آنجا حلقه های استاتور (Stator rings) مناطق ساکنی را ایجاد کرده و دو فاز از یکدیگر جدا می شوند.

معرفی انواع برج های جداسازیمعرفی انواع برج های جداسازیمعرفی انواع برج های جداسازی

تصاویر بالا نمونه هایی از برج های استخراج همزن دار می باشند

۷- استخراج کننده با دیسک چرخان  RDC و استخراج کننده CM:

استخراج کننده CM از پره های توربینی دیسکی با پره های ساخت برای پخش و مخلوط کردن مایعات استفاده می کند. همچنین از صفحات افقی برای کاهش اختلاط محوری استفاده می نماید. دستگاه RDC خیلی مشابه CM است با این تفاوت که بافل های عمودی در آن وجود ندارد و همزدن در اثر دیسک های چرخان انجام می شود که معمولاً سرعت بیشتری از پره های توربینی دارند.

معرفی انواع برج های جداسازی

نمونه ای از استخراج کننده RDC

پیوستگی و بقای جرم در سیالات

پیوستگی و بقای جرم در سیالات

پردیس فناوری کیش_طرح مشاوره متخصصین صنعت و مدیریت_گروه مکانیک

بقای جرم – پیوستگی

در مکانیک سیالات، به یک جز کوچک سیال که شامل تعداد بسیار زیادی مولکول است «حجم کنترل» (Control Volume) می‌گویند. تعریف حجم کنترل و مشخص کردن مرزهای آن، یکی از اساسی‌ترین مسائل در علم مکانیک سیالات برای تعیین معادلات بقای جرم و پیوستگی است و این مطلب به بیان دقیق مفاهیم مرتبط با آن می‌پردازد. در ادامه نشان داده می‌شود که حجم کنترل می‌تواند ساکن و یا متحرک باشد و همچنین شکل آن نیز با زمان تغییر کند.

برای تعریف پیوستگی ابتدا کمیت‌های شدتی و مقداری را تعریف می‌کنیم. «کمیت شدتی» (Intensive Property)، خاصیتی از یک ماده است که به اندازه سیستم و یا مقدار آن ماده بستگی نداشته باشد. برای مثال، دما و چگالی یک جسم با نصف کردن آن جسم تغییر نمی‌کنند، بنابراین این دو خاصیت، کمیت‌های شدتی هستند. به خواصی که اندازه آن‌ها به اندازه سیستم و یا مقدار ماده بستگی دارند «کمیت‌های مقداری» (Extensive Property) می‌گویند. برای مثال، جرم، حجم و گرمای منتقل شده از جسم کمیت‌های مقداری هستند.

معادله پیوستگی به صورت کلی، تغییرات یک کمیت شدتی مانند L را در یک سیستم بیان می‌کند. لازم به ذکر است که سیستم به صورت مجموعه‌ای از اجزا تعریف می‌شود که ویژگی‌های اساسی این اجزا در طول زمان بدون تغییر باقی می‌مانند. برای بیان معادله پیوستگی ابتدا به بررسی مفهوم «بقای جرم» (Conservation of Math) می‌پردازیم. معادله بقای جرم برای یک سیستم که در یک میدان جریان سیال قرار دارد به شکل زیر قابل تعریف است:

سیالات-مشتق مادیرابطه 1

سیالات بقای جرمرابطه ۲

این روابط نشان می‌دهند که جرم سیستم در طول زمان ثابت می‌ماند. همچنین دقت شود که انتگرال نشان داده شده در رابطه بالا، روی حجم سیستم اعمال می‌شود. این معادلات به وضوح بیان می‌کنند که در یک سیستم بسته، جرم سیستم در طول یک فرایند ثابت باقی می‌ماند. در ادامه برای بیان جزئیات روابط بقای جرم و پیوستگی (پایستگی جرم)، از فرم رایج معادله انتقال رینولدز استفاده می‌کنیم. که این معادله به شکل زیر نمایش داده می‌شود:

معادله انتقال رینولدزرابطه ۳

سمت چپ این معادله، نرخ تغییرات کمیت مورد نظر ما در سیستم را بیان می‌کند. ترم اول در سمت راست رابطه بالا، نشان دهنده انتگرال روی حجم کنترل است و شامل ترم‌های «چشمه» (source) و «چاه» (sink) می‌شود. ترم دوم سمت راست معادله انتقال رینولدز نیز نشان دهنده انتگرال‌گیری روی سطح‌های حجم کنترل مورد نظر ما است. این قسمت معادله بیان می‌کند که چه مقدار سیال از مرز‌های حجم کنترل به سمت داخل و یا خارج آن عبور می‌کند.

پیوستگی و مفهوم حجم کنترل

در صورتی که پارامتر مورد نظر در معادله انتقال رینولدز (B) برابر با جرم در نظر گرفته شود، مقدار متغیر  b برابر با یک می‌شود. در نهایت با اعمال معادله انتقال رینولدز روی یک حجم کنترل ثابت و بدون تغییر شکل که در تصویر بالا نشان داده شده است، معادله نهایی به فرم زیر در می‌آید.

معادله انتقال رینولدز

سمت چپ معادله بالا، نرخ زمانی تغییرات جرم سیستم را نشان می‌دهد و به صورت مجموع دو ویژگی مهم از حجم کنترل بیان می‌شود که عبارات سمت راست معادله را تشکیل می‌دهند. عبارت اول، نرخ زمانی تغییرات جرم در داخل حجم کنترل را به شکل زیر نشان می‌دهد.

پیوستگی

همچنین عبارت دوم، جریان جرمی از طریق مرزهای حجم کنترل را مطابق با معادله زیر نشان می‌دهد.

پیوستگی

عبارت داخل انتگرال بالا، حاصل ضرب سرعت عمود بر قسمت کوچکی از سطح مقطع (V.n^) را در دیفرانسیل سطح مقطع (dA)، نشان می‌دهد. علاوه بر این، همانطور که در شکل زیر نشان داده شده است، در صورتی که مقدار V.n^ مثبت باشد، جهت جریان سیال به سمت خارج از مرزهای حجم کنترل است و در صورتی که مقدار V.n^ منفی باشد جهت جریان سیال به سمت داخل حجم کنترل است.

سطح کنترل-حجم کنترل

بنابراین انتگرال فوق حاصل جمع عبارت ρV.n^dA، روی تمام سطوح حجم کنترل است و می‌توان آن را به فرم زیر نشان داد.

پیوستگی و بقای جرم

در رابطه بالا،  جریان جرمی را نشان می‌دهد و می‌توان نتیجه گرفت که اگر عبارت سمت چپ معادله، مقدار مثبتی داشته باشد جریان خالص به سمت خارج از حجم کنترل است و در صورتی که حاصل عبارات سمت چپ معادله، مقداری منفی باشد، جریان خالص به سمت داخل حجم کنترل است.

معادله بقای جرم را می‌توان برای حالت پایا بازنویسی کرد. توجه شود که در حالت پایا، تمامی خواص میدان جریان از جمله چگالی ثابت می‌مانند. بنابراین از ترم اول سمت راست معادله (3) صرف نظر می‌شود. به عبارت دیگر در حالت پایا رابطه زیر برقرار است:

پیوستگی

بنابراین برای بیان معادله بقای جرم به فرم حجم کنترلی، معادلات ۱، ۲ و ۳ را با یکدیگر ترکیب می‌کنیم. نتیجه نهایی به فرم رابطه زیر خواهد بود که به آن «معادله پیوستگی» (Continuity Equation) می‌گویند.

معادله پیوستگی

محاسبه سرعت متوسط

معمولا برای محاسبه جریان جرمی از یک سطح مقطع مشخص سیال به مساحت A، از رابطه زیر استفاده می‌شود.

دبی جرمی سیالات

در این رابطه ρ چگالی، Q دبی حجمی و V سرعت متوسط جریان سیال عمود بر سطح مقطع A است. از رابطه بالا برای محاسبه سرعت (V) و چگالی (ρ) متوسط یک سیال نیز استفاده می‌شود. در اکثر مسائلی که ما با آن‌ها سر و کار داریم سیال به صورت غیر قابل تراکم در نظر گرفته می‌شود و چگالی آن تغییر نمی‌کند. بنابراین در چنین مسائلی، چگالی نقطه‌ای و متوسط سیال در یک سطح مقطع، یکسان هستند.

برای محاسبه سرعت متوسط سیال عبوری از سطح مقطع A، جریان جرمی محاسبه شده توسط رابطه بالا را با جریان جرمی حاصل از رابطه انتگرالی برابر می‌گذاریم. رابطه انتگرالی محاسبه جریان جرمی که در بخش قبلی به آن اشاره شد، به فرم زیر است.

دبی جرمی سیالات

بنابراین سرعت متوسط سیال مطابق با رابطه زیر محاسبه می‌شود.

سرعت متوسط در سیالات

مثال

لوله‌ای به شعاع R را مطابق شکل زیر در نظر بگیرید. سیالی غیر قابل تراکم به صورت پایا در آن جریان دارد. در مقطع «1»، سرعت سیال برابر با مقدار ثابت U است و جهت آن در تمامی نقاط، موازی با محور لوله است. در مقطع «2»، پروفیل سرعت سیال به صورت متقارن و سهموی است به طوری که مقدار آن روی دیواره برابر با صفر و در مرکز لوله ماکزیمم (umax) است. برای راهنمایی، رابطه‌ سرعت بر حسب فاصله از مرکز لوله برای مقطع «2» در شکل نشان داده شده است. در این مسئله ابتدا رابطه بین سرعت مقطع «۱» (U) و ماکزیمم سرعت مقطع «2» (umax) را بیابید. سپس به محاسبه رابطه بین سرعت متوسط در مقطع «2» و و umax بپردازید.

مثال سیالات

انتخاب مناسب حجم کنترل، اولین گام برای پاسخ به این مسئله است. حجم کنترل مورد نظر در شکل بالا با خط‌چین نمایش داده شده است. در ابتدا رابطه پیوستگی که در بخش قبلی بیان کردیم را برای این حجم کنترل می‌نویسیم. توجه به این نکته ضروری است که ترم اول معادله پیوستگی برای جریان پایا برابر با صفر است. بنابراین داریم:

معادله انتقال رینولدز1

در مقطع «1» سرعت سیال، مقداری ثابت و برابر با U دارد، بنابراین معادله پیوستگی در مقطع «1» به صورت رابطه زیر بیان می‌شود:

رابطه پیوستگی2

سرعت سیال در مقطع «۲» یکنواخت نیست و برای محاسبه انتگرال موجود در معادله پیوستگی، نیاز به تعیین dA است. بنابراین dA را مطابق با شکل زیر به صورت یک واشر به شعاع r و ضخامت dr در نظر می‌گیریم. این واشر مساحتی برابر با dA دارد.

انتگرال سطح

بنابراین دبی جرمی عبوری از مقطع ۲ با استفاده از رابطه زیر قابل محاسبه است.

دبی جرمی3

دبی جرمی عبوری از مقطع‌های ۱ و ۲ باهم برابر هستند. بنابراین با ترکیب معادلات ۱، ۲ و ۳ رابطه زیر برای سیال به دست می‌آید.

معادله سیالات4

در ادامه با توجه به فرض غیر قابل تراکم بودن سیال، چگالی مقطع‌های «1» و «2» را با یکدیگر برابر قرار می‌دهیم و در نهایت رابطه سرعت مقطع «2» که به صورت سهومی است را در رابطه بالا وارد می‌کنیم.

رابطه پیوستگی5

با انتگرال گیری از رابطه بالا در طول شعاع لوله به رابطه زیر می‌رسیم و ارتباط بین سرعت مقطع «۱» (U) و ماکزیمم سرعت مقطع «2» (umax) به دست می‌آید.

رابطه پیوستگیدینامیک سیالات

روش عمومی محاسبه سرعت متوسط در سیالات، استفاده از رابطه‌ای است که در درس‌نامه ارائه شد. در اینجا می‌دانیم که سیال مورد نظر در این مسئله غیر قابل تراکم است و در این شرایط، سرعت متوسط سیال در تمامی مقاطع لوله یکسان در نظر گرفته می‌شود. بنابراین رابطه بین سرعت متوسط در مقطع «2» و و umax به فرم زیر قابل محاسبه است.

دینامیک سیالات

تعمیم معادله پیوستگی برای حجم کنترل متحرک و بدون تغییر شکل

در قسمت‌های قبل، معادله پیوستگی را در حالتی بیان کردیم که حجم کنترل ثابت بود و تغییر شکلی در آن رخ نمی‌داد. در ادامه به بررسی معادله پیوستگی با فرض حجم کنترل متحرک و بدون تغییر شکل می‌پردازیم و روابط حاکم بر آن را مورد بررسی قرار می‌دهیم. همانطور که در قسمت قبلی اشاره شد انتخاب حجم کنترل مناسب، مهمترین گام در پاسخگویی به مسائل مکانیک سیالات است و در صورتی که حجم کنترل به درستی انتخاب نشده باشد، محاسبات لازم چندین برابر خواهند شد. این موضوع در قالب مثال‌، مورد بررسی قرار گرفته است.

در برخی از مسائل انتخاب حجم کنترل متصل به مرجع متحرک، موجب سادگی راه حل مسئله می‌شود. برای مثال یک هواپیمای در حال حرکت را در نظر بگیرید. در صورتی که حجم کنترل، موتور جتی باشد که با هواپیما در حال حرکت است، مسئله به سادگی قابل حل است. مهم‌ترین پارامتر در این مسائل، سرعت سیال نسبت به حجم کنترل متحرک است که برای محاسبه آن می‌توان از رابطه زیر استفاده کرد. در این رابطه، ارتباط بین سرعت‌های مختلف نشان داده شده است.

بردار سرعت نسبیسرعت نسبی سیالات

W سرعت نسبی سیال را نشان می‌دهد و برابر با سرعتی است که توسط ناظر متحرک با حجم کنترل، دیده می‌شود. Vcv سرعت حجم کنترل را نشان می‌دهد که برابر با سرعت حجم کنترل نسبت به ناظر ساکن است. V نیز سرعت مطلق سیال است که نسبت به ناظر ساکن اندازه‌گیری می‌شود.

برای محاسبه معادله پیوستگی، رابطه بین سرعت‌ها که در معادله بالا نشان داده شده است را در معادله انتقال رینولدز وارد می‌کنیم. در نهایت رابطه پیوستگی اصلاح شده، به فرم زیر در می‌آید:

رابطه پیوستگی

 

اثرات گاز دی اکسید کربن بر سلامتی

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

کربن دی‌اکسید یا گازکربنیک (با فرمول شیمیایی CO۲)، از ترکیب کربُن با اکسیژن به دست می‌آید. گاز کربنیک بر اثر سوختن زغال و مواد آلی در مجاورت اکسیژن، تخمیر مایعات، تنفس جانوران و گیاهان و غیره به دست می‌آید. (به‌طور بسیار ساده‌تر می‌توان گفت زمانی که کربن می‌سوزد-یا به عبارت دیگر سوختن کامل صورت می‌گیرد-گاز دی‌اکسید کربن تولید می‌شود) کربن دی‌اکسید دارای دو پیوند دوگانه o=c=o می‌باشد تعداد پیوندهای کووالانسی در آن ۴ می‌باشد و دو قلمرو الکترونی دارد.
گاز دی اکسید کربن گازی است بی‌رنگ، بی‌بو، دارای طعمی مایل به اسید. وزن مخصوص آن ۱/۵۲ است. چون این گاز سنگین‌تر از هواست، همیشه در طبقهٔ پایین محیطی که حاصل می‌شود، پخش می‌گردد. (این گاز۰۳\۰٪ از هوا را تشکیل می‌دهد)
گیاهان از آن در فرایند فتوسنتز برای فرآوری کربوهیدرات‌ها بهره می‌برند و با گرفتن آن، از خود اکسیژن بیرون می‌دهند. CO۲ حاضر در اتمسفر در نقش یک سپر حرارتی برای زمین کار می‌کند و با اثر گلخانه‌ای طبیعی خود، از سرما در زمین جلوگیری می‌کند. اگرچه تراکم‌های بالای کربن دی‌اکسید در جو زمین، که با سوختن سوخت‌های فسیلی تولید می‌شود، به عنوان آلاینده جوی شناخته می‌شود.
گازهای گلخانه‌ای که کربن دی‌اکسید نیز یکی از آنهاست باعث می‌شود که اشعه‌های خورشید با طول موج پایین و از ابرها که آن‌ها نیز جز گازهای گلخانه‌ای هستند بگذرند و بعد از برخورد به سطح زمین بازتاب شده و طول موج آن افزایش می‌یابد و از پرتوهای فرابنفش به فروسرخ تبدیل می‌گردد.
پرتوهای فروسرخ خطرناک نیستند و بعد از برخورد به گازهای گلخانه‌ای بازمی‌گردند و نمی‌توانند از آنجا عبور کنند و باعث گرم شدن می‌شوند.
در صورت تنفس این گاز انسان ابتدا احساس تنگی نفس کرده و پس از مدت بسیار طولانی ممکن است خفه شود. دی‌اکسید کربن برخلاف اکسیژن که باعث شعله‌ور تر شدن آتش می‌شود، باعث خفگی آتش می‌شود، به همین خاطر است که در کپسول‌های آتش‌نشانی گاز دی‌اکسید کربن وجود دارد.
به‌طور طبیعی در جو زمین به عنوان گاز ردیابی در غلظت حدود ۰٫۰۴ درصد (400 ppm) در حجم اتفاق می‌افتد. منابع طبیعی شامل آتشفشان، چشمه‌های آب گرم و گیزرها هستند و از طریق انحلال در آب و اسیدها از سنگ‌های کربنات آزاد می‌شوند. از آنجا که دی‌اکسید کربن محلول در آب است، به‌طور طبیعی در آب‌های زیرزمینی، رودخانه‌ها و دریاچه‌ها، یخ پوشیده شده، یخچال‌ها و آب دریا رخ می‌دهد. این موجود در ذخایر نفت و گاز طبیعی است. دی‌اکسید کربن در غلظت‌های معمول مواجهه بی‌بو است، با این حال در غلظت‌های بالا بوی تند و اسیدی است.
به عنوان منبع کربن موجود در چرخه کربن، دی‌اکسید کربن جوی منبع اصلی کربن برای زندگی در زمین است و غلظت آن در فضای صنعتی قبل از صنعت زمین از زمان دیر شدن پرکامبرین توسط موجودات فتوسنتز و پدیده‌های زمین‌شناسی تنظیم شده‌است. گیاهان، جلبک‌ها و سیانوباکتری‌ها از انرژی نور برای فتوسنتز کربوهیدرات از دی‌اکسید کربن و آب استفاده می‌کنند، با اکسیژن به عنوان یک ماده زباله تولید می‌شود.
دی‌اکسید کربن (CO2) توسط تمام موجودات هوازی تولید می‌شود زمانی که آن‌ها متابولیزه کربوهیدرات و چربی برای تولید انرژی توسط تنفس. از طریق غرقابی ماهی و به هوا از طریق ریه‌های حیوانات سرزنده هوا تنفس، از جمله انسان، به آب منتقل می‌شود. دی‌اکسید کربن در طول فرایند فروپاشی مواد آلی و تخمیر قند در نان، آبجو و آبزی تولید می‌شود. این تولید توسط احتراق چوب و دیگر مواد آلی و سوخت‌های فسیلی مانند زغال سنگ، زغال سنگ، زغال سنگ، نفت و گاز طبیعی تولید می‌شود. از سوی دیگر، در بسیاری از فرایندهای اکسیداسیون در مقیاس بزرگ، به عنوان محصول جانبی ناخواسته، به عنوان مثال تولید اسید اکریلیک (بیش از ۵ میلیون تن در سال) است.
این یک ماده صنعتی چند منظوره است که برای مثال، به عنوان یک گاز غیرمستقیم در جوشکاری و آتش خاموش، به عنوان یک گاز فشار در اسلحه هوایی و بازیابی نفت، به عنوان یک ماده شیمیایی و در فرم مایع به عنوان یک حلال در کافئین قهوه و فوق بحرانی خشک کردن. این افزودنی به آب آشامیدنی و نوشابه‌های گازدار شامل آبجو و شراب‌های گازدار اضافه می‌شود تا اضافه شود. شکل جامد یخ زده از CO2، به نام یخ خشک شناخته شده به عنوان یک مبرد و به عنوان ساینده در انفجار خشک یخ استفاده می‌شود.
دی‌اکسید کربن مهم‌ترین گازهای گلخانه‌ای طولانی مدت در جو زمین است. از آنجاییکه انتشارات انسان‌شناسی انقلاب صنعتی، عمدتاً از استفاده از سوخت‌های فسیلی و جنگل زدایی، غلظت آن در جو به سرعت در حال افزایش است و منجر به گرم شدن کره زمین می‌شود. CO2 که در نتیجه استفاده از سوخت‌های فسیلی به اتمسفر وارد شده‌است “نشان دهنده [۴/۹۹ درصد از انتشار گازهای گلخانه‌ای در سال ۲۰۱۳]” است. دی‌اکسید کربن همچنین باعث اسیدی شدن اقیانوس‌ها می‌شود، زیرا در آب برای تشکیل اسید کربنیک حل می‌شود.
گاز دي اكسيد كربن اثراتي را نيز بر بدن مي گذارد، تحقيقات نـشان داده اسـت كـه قـرار گـرفتن
طولاني مدت در معرض مقادير متوسط و مشخصي از گاز دي اكسيدكربن مي تواند اثرات سوئي بـر
سلامتي داشته باشد زيرا بر متابوليسم كلسيم- فسفر در بدن اثر گذاشته و باعث رسوب كلـسيم در
بافت ها مي گردد، همچنين مشخص شده است كه دي اكسيد كربن براي قلب نيز سمي مـي باشـد
زيرا نيروي انقباضي را در قلب كاهش داده و اين اثر با افزايش غلظت دي اكسيدكربن افـزايش مـي
يابد. از اين رو براي آن استانداردهايي تعريف شده است.
اهميت دي اكسيد كربن در چرخه حيات:


اهميت گاز دي اكسيد كربن در چرخه حيات از آنجايي كه اين گاز به عنوان يكي از تر كيبات هواي

تازه مي باشد مشخص است. در ارتفاع 30 كيلومتري از سطح دريا و فشار kPa ١٠ غلظت گـاز دي
اكسيدكربن (ppm ٣٦٠٪ (٠٫٠٣٦ تا ,(ppm ٣٩٠٪ (٠٫٠٣٩ )متغير است اين گاز به عنوان يكـي
از گاز هاي مهم و يك عامل اساسي در چرخه حيات موجودات زنده محسوب مي گردد و در چ رخـه
فتوسنتز گياهان نقش اساسي بازي مي كند ، دي اكسيدكربن در طـي تـنفس گياهـان ، حيوانـات،
قارچ ها و ميكروارگانيسم ها توليد مي گردد وسپس به صورت مستقيم و غير مستقيم در توليد غـذا
در گياهان استفاده شده و بدين ترتيب زنجيره كربن شكل مي گيرد،
دي اكسيد كربن در سيستم بافري بدن نقش بسيار مهمي برعهده دارد و تنظيم كننده و نگهدارنده
pH خون است، به همين دليل در بدن به آن بافركربنات ميگويند كه تشكيل شده است از يونهاي
بيكربنات و دي اكسيد كربن محلول به همراه اسيد كربونيك. اسيد كربونيك ميتواند يونهاي
هيدروكسيد را در بدن خنثي كرده و از اين طريق از بالا رفتن pH خون جلوگيري مي كند و در
زمان كاهش pH خون يون بيكربنات وارد عمل شده و يونهاي هيدروژن را كه باعث كاهش pH
خون شده خنثي كرده و در نهايت باعث ثابت نگه داشتن آن مي شود. افزايش و ياكاهش pH براي
حيات انسان خطرناك است، از اين رو ميتوان گفت دي اكسيد كربن با تنظيم pH خون در بدن
1 نقش حياتي دارد و براي ادامه حيات ضروري است.
خطرات سلامتي ناشي از دي اكسيد كربن:
در سال 2000يك سازمان تحقيقـاتي در آمريكـا مطالعـاتي را بـر روي گـازCO2 كـه مربـوط بـه
گزارشات حوادث آتش سـوزي از سـال 1975بـود انجـام داد، در ايـن تحقيقـات 51 مـورد حادثـه
درخصوص انتشار گاز CO2 از تجهيزات اطفاء حريق گزارش شده بود كه منجر به 72 مورد مـرگ و
145 مورد جراحت شده بود.
با توجه به اينكه CO2 گازي تقريبا بي بو و بي رنگ است تشخيص آن در محيط در مقادير كمتر از
40 % مشكل بوده و همچنين تشخيص مسموميت با آن نيز دشوار است، زيرا علائـم مـسموميت بـا
دي اكسيد كربن مشابه مسمويت با تعداد زيادي از آلاينده ها است و داراي اثر اختصاصي نيست.
همانطور كه گفته شد دي اكسيدكربن يك خفگي آور ساده است، مكانيسم خفگي به اين ترتيب
است كه افزايش ميزان CO2 باعث كاهش غلظت اكسيژن تا سطح خطرناك براي انسان ميگردد.
هرچند مطالعات بر روي حيوانات نشان ميدهد تركيب گاز CO2 با مونواكسيد كربن ميتواند باعث
افزايش سرعت اتصال مونواكسيد كربن به هموگلوبين شده و اثر خفه كنندگي آن را نشديد نمايد
.[3]
تحقيقات و ارزيابي ريسك بهداشتي ناشي از تماس با دي اكسيدكربن نشان مي دهـد كـه در زمـان
كوتاه حداكثر دوز قابل تحمل 3 %و در زمان طولاني 1 %است و بالاتر از اين مقادير بر روي سلامتي
در افراد عادي اثر خواهد داشت[4 .[
در ادامه اثرات حاصل از دي اكسيدكربن در غلظت هاي مختلف آمده است:
• قرارگيري در مدت طولاني در مقدار 1 %باعث ايجاد خواب آلودگي مي گردد.
• در غلظت 2 %اثراتي مانند مواد مخدر بر بدن داشته و باعث بالا رفتن ضـربان قلـب و فـشار
خون مي گردد و باعث مي شود كه ميزان شنوايي كاهش يابد [1 .[
• در 5 %باعث تحريك مركز تنفس، سرگيجه، گيجي و سختي تنفس همـراه بـا سـردرد مـي
گردد، حالت هاي اضطراب و آشفتگي هم مي تواند در اين غلظت ها ايجاد شود [5 .[
• در غلظت هاي حدود 8 %باعث سردرد، تعرق، تاري ديد، رعشه و كاهش هوشياري بعد از 5
تا 10 دقيقه درمعرض قرار گيري، مي گردد. [

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

هايپركاپنيا (Hypercapnia (يا افزايش غلظت دي اكسيدكربن در خون
هايپر كاپنيا يا هايپركاپني از واژه يوناني hyper به معني بالا و kapnos به معني دود استخراج شده
است و به حالتي گفته مي شود كه غلظت دي اكسيدكربن در خون بالا است، زماني كـه ايـن اتفـاق
در بدن مي افتد بر اثر يك واكنش طبيعي، بدن در شرايط تامين اكـسيژن بيـشتر قـرار مـي گيـرد،
مانند جابجايي ناگهاني سر در هنگام خواب.اگر در اين واكـنش شكـستي رخ دهـد و بخـوبي انجـام
نشود مي تواند به مرگ منجر شود و كشنده باشد، مانند سندرم مرگ ناگهاني نـوزادان . هايپركاپنيـا
در كل به دليل تنفس كم ( زماني كه نفس ها عميق نيست)، ناراحتي هاي ريه و يـا در زمـاني كـه
هوشياري فرد كم است اتفاق مي افتد، همچنين مي تواند در زماني كه مقادير دي اكسيد كـربن در
محيط بيشتر از حد نرمال است( مانند فوران آتش فشان و پديده هاي زمين گرمايي) دربعـد وسـيع
زيست محيطي اتفاق افتد و يا مي تواند به دليل تنفس مجدد دي اكسيدكربني كه از بازدم مي آيد
ايجاد شود

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

تاثیر نور مستقیم آفتاب بر بدن

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

همیشه نکات مختلفی در مورد خورشید و تاثیر آن بر روی بدن گفته شده است.

تاثیرات منفی اشعه ماورای بنفش بر روی پوست و ایجاد سرطان یکی از نکات منفی نور خورشید است

که افراد را برای استفاده از انواع کرم ضد آفتاب و پیشگیری از مشکلات احتمالی ترغیب می‌کند.

یکی دیگر از مسائلی که در مورد نور خورشید گفته می‌شود، نیاز به آن برای جذب ویتامین دی است،

البته این نکته از تأثیرات مثبت نور خورشید محسوب می‌شود.

باید بدانید که نور خورشید تأثیرات مختلفی بر زندگی و بدن دارد که شاید حتی هرگز در مورد آن چیزی به گوشتان نخورده باشد

۱. قرمزی پوست بدن

اگر برای سال‌ها بدون محافظت از پوست، در معرض نور خورشید قرار گرفته باشید،

رنگ پوست بدن تغییر پیدا می‌کند و به رنگ قرمز متمایل می‌شود.

با افزایش سن نور خورشید باعث نازک شدن پوست می‌شود،

ساختارهای اطراف رگ‌های خونی را شل می‌کند و موجب منبسط شدن آنها می‌شود به همین دلیل است

که لکه‌های قرمز و قهوه‌ای روی پوست به وجود می‌آید که اغلب هم روی گونه‌ها و گردن مشاهده می‌شود.

به گفته متخصصین همه ساختارهای پوست می‌توانند ذوب شوند و حالت طبیعی خود را از دست بدهند.

در فرآیند ذوب شدن، کلاژن پوست پخش می‌شود و به رگ‌های خونی اجازه می‌دهد که از سطح دیده شوند.

متأسفانه این حالت برگشت‌ناپذیر است.

۲. خواب بهتر شبانه

ر اساس مطالعه‌ای که در سال ۲۰۱۳ در دانشگاه کلورادو انجام شد، مشاهده شده است

که نور طبیعی خورشید ریتم شبانه‌روزی بدن یا همان ساعت بیولوژیکی داخلی را تنظیم می‌کند

و موجب متعادل شدن چرخه خواب می‌شود.

طبق این مطالعه، برنامه طبیعی خواب شما با زمان طلوع خورشید و غروب آن منطبق است.

زمانی که به طور معمول خود را در معرض تور خورشید قرار دهید،

بدن شما به درستی می‌تواند ساعت داخلی خود را تنظیم کند تا به چرخه نور طبیعی نزدیک‌تر شود

و می‌توانید به خواب شبانه از این دید نگاه کنید که برای روز بعد انرژی کافی را به شما بازگرداند.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

۳. حس و حال بهتر

تحقیقات نشان می‌دهند خورشید از نظر شیمیایی می‌تواند لبخند روی صورت شما به وجود آورد.

بر اساس مطالعه‌ای که در سال ۲۰۱۴ در دانشگاه پزشکی هاروارد

و بیمارستان عمومی ماساچوست انجام گرفت،

نور خورشید با آزاد کردن مواد شیمیایی در بدن برای داشتن حال خوب مانند بتا اندورفین در ارتباط است،

این ماده زمانی که فعالیت بدنی و ورزش نیز انجام بگیرد از بدن ترشح می‌شود. این ماده بر احساس خوب

و شادی تأثیر سریع دارد. البته همین نکته هشدار می‌دهد

که اگر فرد برای مدت طولانی در معرض نور خورشید قرار بگیرد

، ممکن است نوعی اعتیاد به خورشید را در او به وجود بیاورد.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

۴. افزایش سطح ویتامین دی

همه افراد می‌دانند که گذراندن وقت در محیط خارج از خانه روشی خوب برای جذب ویتامین دی است.

مطالعات مختلف بر این نکته تأکید دارند که یکی از مزیت‌های قرار گرفتن در نور خورشید،

افزایش سطح ویتامین D موجود در اشعه ماورای بنفش است که باعث کاهش احتمال ابتلا به بیماری مالتیپل

اسکلوروزیس یا ام اس، پوکی استخوان و حتی آنفولانزا و سرماخوردگی می‌شود.

البته گفته می‌شود نور زیاد خورشید می‌تواند نتایج مورد انتظار را برعکس کند و سطح ویتامین را پایین بیاورد.

زمانی که نور خورشید به پوست برخورد می‌کند، مانند یک واکنش شیمیایی ویتامین دی اولیه را به ویتامین دی

تبدیل می‌کند و قطعاً این واکنش مفید است.

ولی برخی دیگر از مطالعات نشان می‌دهند که نور زیاد خورشید در یک روز این واکنش را در جهت وارونه انجام می‌دهد.

۵. مشکلات چشمی

در بسیاری از افراد مشکلات چشمی و دید، عارضه‌ای که با بالا رفتن سن اتفاق می‌افتد و متأسفانه اجتناب‌ناپذیر

است ولی مطالعات نشان می‌دهند که نور خورشید می‌تواند این مشکلات را بدتر و شدیدتر کند و این اتفاق در افراد

بالای ۴۰ سال بیشتر پیش می‌آید. طبق تحقیقی گه در سال ۲۰۱۱ در دانشگاه فوردهام انجام شد، اشعه ماورای بنفش

که باعث آسیب پوستی می‌شود، می‌تواند چشم‌ها را نیز دچار آسیب و مشکل کند و احتمال ابتلا به آب مروارید را

نیز افزایش دهد و در موارد حاد، این مشکل می‌تواند به کوری کامل تبدیل شد. برای پیشگیری از هرگونه مشکل

چشمی به دلیل نور خورشید، از عینک آفتابی استفاده کنید.

۶. کهیرهای پوستی

در افرادی که به مشکل پوستی بثورات نوری پلی مورفیک یا جوش نوری چندشکلی دچار هستند، زمانی که در

معرض نور خورشید قرار گیرند، به سادگی دچار کهیر می‌شوند. واکنش قرمز و خارش‌آور ممکن است در هر

قسمت از بدن و در عرض چند دقیقه تا چند ساعت بعد از قرار گرفتن در نور خورشید ایجاد شود. در آلرژی‌های

شدیدتر، نوعی بیماری به نام پورفیری ایجاد می‌شود که به عنوان بیماری گرگینه یا ومپایر شناخته می‌شود. در این

شرایط که به دلایل ژنتیکی یا مشکلات کبدی ایجاد می‌شود، پوست با نور خورشید به شکل حبابی و تاول ورم

می‌کند. خوشبختانه این بیماری آزاردهنده نادر است و افراد بسیار کمی را مبتلا می‌کند

۷. پیری پوست

بسیاری از علایم پیری پوست در افراد، به دلیل خورشید به وجود می‌آید. در اغلب موارد چین و چروک و نقاط

قهوه‌ای رنگ پوست موجب می‌شود فرد از آنچه هست پیرتر به نظر برسد. به گفته متخصصین تغییرات ساده‌ای در

سبک زندگی مانند به کار بردن کلاه و آفتاب‌گیر و استفاده از کرم‌های ضد آفتاب، تأثیر بسیاری خواهند داشت.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی

۸. درمان جوش صورت

نور خورشید به میزان کم و محدود می‌تواند به درمان برخی از مشکلات پوستی مانند آکنه و پسوریازیس کمک

کند. به طرز عجیبی روشی که باعث درمان می‌شود، روشی است که باعث ایجاد سرطان پوست هم می‌شود!

خورشید سیستم ایمنی سطح پوست را تضعیف می‌کند و باعث ضعیف شدن خط دفاعی در برابر سرطان می‌گردد،

در ادامه این روند شانس گسترش ملانوم بدخیم پوستی افزایش می‌یابد. با این حال مشکلاتی مانند آکنه، جوش

صورت و پسوریازیس پوستی به دلیل فعالیت بیش از حد سیستم ایمنی به وجود می‌آیند و اگر بتوان تا حدی قدرت

سیستم ایمنی را کاهش داد، می‌توان به درمان این مشکلات هم کمک کرد. البته متخصصین به شما هشدار می‌دهند

که به طور کامل برای درمان بیماری خود به نور خورشید اعتماد نکنید چون قرار گرفتن بیش از اندازه زیر نور

آفتاب می‌تواند موجب ابتلا به سرطان پوست گردد.

۹. لکه‌های قهوه‌ای رنگ روی پوست

دفعه بعدی که از نوشیدن لیموناد در فضای بیرون لذت می‌برید، سعی کنید که آن را از پوست خود دور نگه دارید،

چون در غیر این صورت ممکن است در عرض چند هفته به لکه‌های قهوه‌ای رنگ دچار شوید. گفته می‌شود زمانی

که پوست خود را زیر نور خورشید در برابر برخی میوه‌ها، گیاهان و حتی عطرهای خاص میوه‌ای قرار می‌دهید،

ممکن است لکه‌های قهوه‌ای درست در محل تماس پوست با میوه پدید آید. خوشبختانه این وضعیت بدون ضرر

است و خودش در عرض چند ماه درمان می‌شود.

۱۰. طول عمر بیشتر

بر اساس مطالعات اخیر، دوری از خورشید درست مانند مصرف سیگار، برای طول عمر شما مضر است.

این مطالعه که بر روی ۳۰ هزار زن سوئدی در طول ۲۰ سال انجام شده است، نشان می‌دهد امید به زندگی در

افرادی که از نور خورشید دوری می‌کرده‌اند، ۲.۱ سال کمتر از افرادی است زمان زیادی را در فضای آزاد سپری

کرده‌اند. زنانی که مدت زمان بیشتری در معرض نور خورشید قرار گرفته‌اند، در ریسک کمتری از ابتلا به

بیماری‌هایی مانند دیابت، ام اس و بیماری‌های قلبی قرار گرفته‌اند. برای افرادی که دوست دارند ساعاتی را در زیر

نور خورشید بگذرانند، این نکته خبر خوبی است ولی باید به یاد داشته باشید نور زیاد خورشید ریسک سرطان

پوست را هم افزایش می‌دهد. با استفاده از کرم ضد آفتاب، عینک آفتابی، کلاه‌های لبه‌دار و لباس‌های آستین‌دار و

بلند می‌توانید از مضرات احتمالی دوری کنید.

پردیس فناوری کیشطرح مشاوره متخصصین صنعت و مدیریت گروه صنعت و مدیریت شیمی